精英家教网 > 高中数学 > 题目详情
18.如图,三棱锥P-ABC中,PA⊥底面ABC,D是AB的中点,AB=2DC,E是PA的中点,F是△ACD的重心.
(I)求证:BC⊥平面PAC;
(II)求证:EF∥平面PBC.

分析 (I)利用线面垂直的判定定理,只要证明BC分别于PA,AC垂直即可;
(II)要证EF∥平面PBC,只要证平面EGD∥平面PBC,利用已知以及面面平行的判定定理,只要证明两个平面的两条相交直线分别平行即可.

解答 证明:(I)在△ABC中,D为AB边上的中点,且AB=2CD,
∴AD=DC=DB,故∠DCA=∠DAC,∠DCB=∠DBC,
∴∠ACB=90°,
∴BC⊥AC,又PA⊥底面ABC,BC?平面ABC,
∴PA⊥BC,
∴BC⊥平面PAC;
(II)连接DF,并延长交AC于G,连接ED,
∵F为△ACD的重心,
∴G为AC的中点,连接EG,
∵E为PA中点,
∴在△PAC中,EG∥PC,
同理可得ED∥PB,
又EG∩ED=E,PC∩PB=P,
∴平面EGD∥平面PBC,
又EF?平面EDG
∴EF∥平面PBC.

点评 本题考查了线面垂直和面面平行的判定定理和性质定理的运用;关键是转化为线线关系进行证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,矩形ABCD所在平面与三角形ECD所在平面相交于CD,AE⊥平面ECD.
(1)求证:AB⊥平面ADE;
(2)若点M在线段AE上,AM=2ME,N为线段CD中点,求证:EN∥平面BDM.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在[-$\frac{π}{6}$,$\frac{5π}{6}$]的图象如图所示,为了得到这个函数的图象,只要将f(x)=sinωx的图象(  )
A.向右平移$\frac{π}{3}$个单位长度B.向右平移$\frac{π}{6}$个单位长度
C.向左平移$\frac{π}{3}$个单位长度D.向左平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\sqrt{2}sin(2x+\frac{π}{4})$,有下列四个结论:
①函数f(x)在区间[-$\frac{3π}{8}$,$\frac{π}{8}$]上是增函数:
②点($\frac{3π}{8}$,0)是函数f(x)图象的一个对称中心;
③函数f(x)的图象可以由函数y=$\sqrt{2}$sin2x的图象向左平移$\frac{π}{4}$得到;
④若x∈[0,$\frac{π}{2}$],则函数f(x)的值域为[0,$\sqrt{2}$].
则所有正确结论的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=asin$\frac{x}{2}$+cos$\frac{x}{2}$(a∈R),且f(x)≤f($\frac{2π}{3}$)恒成立.给出下列结论:
①函数y=f(x)在[0,$\frac{2π}{3}$]上单调递增;
②将函数y=f(x)的图象向左平移$\frac{π}{3}$个单位,所得图象对应的函数为偶函数;
③若k≥2,则函数g(x)=kx-f(2x-$\frac{π}{3}$)有且只有一个零点.
其中正确的结论是①③.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知命题p:“存在x0∈[1,+∞),使得(log23)${\;}^{{x}_{0}}$≥1”,则下列说法正确的是(  )
A.p是假命题;¬p“任意x∈[1,+∞),都有(log23)x<1”
B.p是真命题;¬p“不存在x0∈[1,+∞),使得(log23)${\;}^{{x}_{0}}$<1”
C.p是真命题;¬p“任意x∈[1,+∞),都有(log23)x<1”
D.p是假命题;¬p“任意x∈(-∞,1),都有(log23)x<1”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\sqrt{3}$,若曲线y(y-kx)=0与双曲线C有且仅有2个交点,则实数k的取值范围k≤-$\sqrt{2}$或k≥$\sqrt{2}$或k=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知实数m,n满足m•n>0,m+n=-1,则$\frac{1}{m}+\frac{1}{n}$的最大值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=-$\frac{1}{3}$x3+2ax2-3a2x+b(0<a<1)
(Ⅰ)求函数f(x)单调区间;
(Ⅱ)当x∈[a+1,a+2]时,恒有|f′(x)|≤a,试确定a的取值范围;
(Ⅲ)当a=$\frac{2}{3}$时,关于x的方程f(x)=0在区间[1,3]上恒有两个相异的实根,求实数b的取值范围.

查看答案和解析>>

同步练习册答案