精英家教网 > 高中数学 > 题目详情
记函数fn(x)=a·xn-1(a∈R,n∈N*)的导函数为f′n(x),已知f′3(2)=12.
(1)求a的值;
(2)设函数gn(x)=fn(x)-n2ln x,试问:是否存在正整数n使得函数gn(x)有且只有一个零点?若存在,请求出所有n的值;若不存在,请说明理由;
(3)若实数x0和m(m>0且m≠1)满足,试比较x0与m的大小,并加以证明.
(1)a=1   (2)存在n=1,使得函数gn(x)有且只有一个零点.
(3)见解析
解:(1)f3′(x)=3ax2,由f3′(2)=12得a=1.
(2)gn(x)=xn-n2ln x-1,
g′n(x)=nxn-1.
因为x>0,令gn′(x)=0得x=
当x>时,gn′(x)>0,gn(x)是增函数;
当0<x<时,gn′(x)<0,gn(x)是减函数.
所以当x=时,gn(x)有极小值,也是最小值,
gn()=n-nln n-1.
当x→0时,gn(x)→+∞;
当x→+∞时,gn(x)→+∞.
当n≥3时,gn()=n(1-ln n)-1<0,函数gn(x)有两个零点;
当n=2时,gn()=-2ln 2+1<0,函数gn(x)有两个零点;
当n=1时,gn()=0,函数gn(x)有且只有一个零点.
综上所述,存在n=1,使得函数gn(x)有且只有一个零点.
(3)fn′(x)=n·xn-1.
因为
所以
解得x0.
则x0-m=
当m>1时,(n+1)(mn-1)>0.
设h(x)=-xn+1+x(n+1)-n(x≥1),则h′(x)=-(n+1)xn+n+1=-(n+1)·(xn-1)≤0,当且仅当x=1时取等号,
所以h(x)在[1,+∞)上是减函数.
又m>1,所以h(m)<h(1)=0,
所以x0-m<0,所以x0<m.
当0<m<1时,(n+1)(mn-1)<0.
设h(x)=-xn+1+x(n+1)-n(0<x≤1),
则h′(x)=-(n+1)xn+n+1=-(n+1)·(xn-1)≥0,当且仅当x=1时取等号,所以h(x)在(0,1]上是增函数.
又因为0<m<1,所以h(m)<h(1)=0,
所以x0-m>0,所以x0>m.
综上所述,当m>1时,x0<m,当0<m<1时,x0>m.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数上的最大值为).
(1)求数列的通项公式;
(2)求证:对任何正整数n (n≥2),都有成立;
(3)设数列的前n项和为Sn,求证:对任意正整数n,都有成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为常数,且,函数 
是自然对数的底数).
(1)求实数的值;
(2)求函数的单调区间;
(3)当时,是否同时存在实数),使得对每一个,直线与曲线都有公共点?若存在,求出最小的实数和最大的实数;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,其中.
(1)讨论在其定义域上的单调性;
(2)当时,求取得最大值和最小值时的的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,且函数处有极值,则ab的最大值为   

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=1+x-+…+,则下列结论正确的是(  )
A.f(x)在(0,1)上恰有一个零点
B.f(x)在(0,1)上恰有两个零点
C.f(x)在(-1,0)上恰有一个零点
D.f(x)在(-1,0)上恰有两个零点

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为小于的常数).
(1)当时,求函数的单调区间;
(2)存在使不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,若等于(   )
A.B.eC.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数,则(    ).
A.B.
C.D.

查看答案和解析>>

同步练习册答案