精英家教网 > 高中数学 > 题目详情
设函数,其中.
(1)讨论在其定义域上的单调性;
(2)当时,求取得最大值和最小值时的的值.
(1)内单调递减,在内单调递增;(2)所以当时,处取得最小值;当时,处同时取得最小只;当时,处取得最小值.

试题分析:(1)对原函数进行求导,,令,解得,当;从而得出,当时,.故内单调递减,在内单调递增.(2)依据第(1)题,对进行讨论,①当时,,由(1)知,上单调递增,所以处分别取得最小值和最大值.②当时,.由(1)知,上单调递增,在上单调递减,因此处取得最大值.又,所以当时,处取得最小值;当时,处同时取得最小只;当时,处取得最小值.
(1)的定义域为.令,得,所以.当;当时,.故内单调递减,在内单调递增.
因为,所以.
①当时,,由(1)知,上单调递增,所以处分别取得最小值和最大值.②当时,.由(1)知,上单调递增,在上单调递减,因此处取得最大值.又,所以当时,处取得最小值;当时,处同时取得最小只;当时,处取得最小值.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若,求证:函数在(1,+∞)上是增函数;
(2)当时,求函数在[1,e]上的最小值及相应的x值;
(3)若存在[l,e],使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

记函数fn(x)=a·xn-1(a∈R,n∈N*)的导函数为f′n(x),已知f′3(2)=12.
(1)求a的值;
(2)设函数gn(x)=fn(x)-n2ln x,试问:是否存在正整数n使得函数gn(x)有且只有一个零点?若存在,请求出所有n的值;若不存在,请说明理由;
(3)若实数x0和m(m>0且m≠1)满足,试比较x0与m的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数在区间上的值域;
(2)是否存在实数a,对任意给定的,在区间上都存在两个不同的,使得成立.若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a= (   )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,其中为实数,若上是单调减函数,且上有最小值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

[2014·山东济宁]已知f(x)=x2+2xf′(2014)+2014lnx,则f′(2014)=(  )
A.2015B.-2015C.2014D.-2014

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若曲线上点处的切线平行于直线,则点的坐标是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数是它的导函数,则            。

查看答案和解析>>

同步练习册答案