ÒÑÖªº¯Êýf£¨x£©=xk+b£¨³£Êýk£¬b¡ÊR£©µÄͼÏó¹ýµã£¨4£¬2£©¡¢£¨16£¬4£©Á½µã£®
£¨1£©Çóf£¨x£©µÄ½âÎöʽ£»
£¨2£©Èôº¯Êýg£¨x£©µÄͼÏóÓ뺯Êýf£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßy=x¶Ô³Æ£¬Èô²»µÈʽg£¨x£©+g£¨x-2£©£¾2ax+2ºã³ÉÁ¢£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨3£©ÈôP1£¬P2£¬P3£¬¡£¬Pn£¬¡ÊǺ¯Êýf£¨x£©Í¼ÏóÉϵĵãÁУ¬Q1£¬Q2£¬Q3£¬¡£¬Qn£¬¡ÊÇxÕý°ëÖáÉϵĵãÁУ¬OΪ×ø±êԵ㣬¡÷OQ1P1£¬¡÷Q1Q2P2£¬¡£¬¡÷Qn-1QnPn£¬¡ÊÇһϵÁÐÕýÈý½ÇÐΣ¬¼ÇËüÃǵı߳¤ÊÇa1£¬a2£¬a3£¬¡£¬an£¬¡£¬Ì½ÇóÊýÁÐanµÄͨÏʽ£¬²¢ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©½«£¨4£¬2£©¡¢£¨16£¬4£©Á½µã×ø±ê´úÈ뺯Êýf£¨x£©=xk+bÖУ¬¼´¿ÉÇó³ök¡¢bµÄÖµ£¬½ø¶øÇóµÃº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©¸ù¾ÝÇ°ÃæÇóµÃµÄf£¨x£©µÄ½âÎöʽºÍÌâÖÐÒÑÖªÌõ¼þ¿ÉÖªº¯Êýg£¨x£©µÄ½âÎöʽ£¬Áîg£¨x£©+g£¨x-2£©£¼2ax+2£¬±ã¿ÉÇó³öaµÄÈ¡Öµ·¶Î§£»
£¨3£©¸ù¾ÝÇ°ÃæÇóµÃµÄº¯Êý½áºÏÌâÖÐÒÑÖªÌõ¼þ±ã¿ÉÇó³öanÓëan+1µÄ¹Øϵ£¬±ã¿ÉÇóµÃÊýÁÐanµÄͨÏʽ£®
½â´ð£º½â£º£¨1£©
?b=0£¬k=?f(x)=£¨2£©g£¨x£©=x
2£¨x¡Ý0£©
g£¨x£©+g£¨x-2£©£¾2ax+2
?ÔÎÊÌâµÈ¼ÛÓÚ
a£¼x+-2ÔÚx¡Ê[2£¬+¡Þ£©ºã³ÉÁ¢£¬
ÀûÓú¯Êý
y=x+-2ÔÚÇø¼ä[2£¬+¡Þ£©ÉÏΪÔöº¯Êý£¬
¿ÉµÃ
a£¼£»
£¨3£©ÓÉ
?x=?a1=£¬
ÓÉ
?x--Sn-1=0?x=£¬
½«x´úÈë
an=2(x-Sn-1)=+£¬
¡à
(an-)2=•(1+12Sn-1)ÇÒ
a1=£¬
ÓÖ
(an+1-)2=•(1+12Sn)£¬
Á½Ê½Ïà¼õ¿ÉµÃ£º
(an+1-)2-(an-)2=an?
(an+1-)2=(an+)2?(an+1+an)(an+1-an-)=0£¬
ÓÖ£¬ÒòΪa
n£¾0£¬ËùÒÔ
an+1-an-=0£¬
´Ó¶øa
nÊÇÒÔ
ΪÊ×Ï
Ϊ¹«²îµÄµÈ²îÊýÁУ¬¼´
an=£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˺¯Êý½âÎöʽµÄÇó·¨ÒÔ¼°ÊýÁÐÓ뺯ÊýµÄ×ۺϣ¬¿¼²éÁËѧÉúµÄ¼ÆËãÄÜÁ¦ºÍ¶ÔÊýÁеÄ×ÛºÏÕÆÎÕ£¬½âÌâʱעÒâÕûÌå˼ÏëºÍת»¯Ë¼ÏëµÄÔËÓã¬ÊôÓÚÖеµÌ⣮