精英家教网 > 高中数学 > 题目详情
11.若双曲线$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{m}$=1的离心率为$\sqrt{m}$,则此双曲线的渐近线方程为(  )
A.y=±$\frac{\sqrt{2}}{2}$xB.y=±$\frac{\sqrt{3}}{3}$xC.y=±$\frac{1}{2}$xD.y=±$\frac{1}{3}$x

分析 利用双曲线的离心率列出方程,求出m,然后求解双曲线的渐近线方程即可.

解答 解:双曲线$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{m}$=1的离心率为$\sqrt{m}$,e=$\frac{c}{a}$=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$,可得$\sqrt{m}=\sqrt{1+\frac{m}{3}}$,解得m=$\frac{3}{2}$,∴$\frac{b}{a}$=$\frac{\sqrt{2}}{2}$,
则此双曲线的渐近线方程为:y=±$\frac{\sqrt{2}}{2}$x.
故选:A.

点评 本题考查双曲线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.(1)已知a>0,b>0,$\frac{1}{b}$-$\frac{1}{a}$>1.求证:$\sqrt{1+a}$>$\frac{1}{\sqrt{1-b}}$.
(2)已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1.求证:a,b,c,d中至少有一个是负数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数为奇函数的是(  )
A.y=$\sqrt{x}$B.y=|sinx|C.y=ex-e-xD.y=cosx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{2}$,已知点A(-a,0)、C(0,b),且S△OAC=1.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l与椭圆相交于不同的两点A、B,若D(a,0),且|BD|=$\frac{4}{5}$$\sqrt{17}$,求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若点A($\sqrt{3}$,1)的直线l1:$\sqrt{3}$x+ay-2=0与过点B($\sqrt{3}$,4)的直线l2交于点C,若△ABC是以AB为底边的等腰三角形,则l2的方程为(  )
A.$\sqrt{3}$x+y-7=0B.$\sqrt{3}$x-y+7=0C.x+$\sqrt{3}$y-7=0D.x-$\sqrt{3}$y-7=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3+x,g(x)=f(x)-ax(a∈R).
(1)当a=4时,求函数g(x)的极大值;
(2)求曲线y=f(x)在点(1,f(1))处的切线l的方程;
(3)若函数g(x)在[0,1]上无极值,且g(x)在[0,1]上的最大值为3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.用a、b表示两条不同的直线,α、β表示两个不同的平面,给出下列命题:
①若a∥b,a∥α,则b∥α;    ②若a⊥α,b⊥α,则a∥b;③若a∥α,b⊥α,则a⊥b;    ④若a⊥α,α∥β,则a⊥β.
其中正确的是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x|x∈N|2≤x≤5},B={x|y=$\sqrt{3-x}$},则A∩B=(  )
A.{2}B.{2,3}C.{2,3,4}D.{4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=sin(2x-$\frac{π}{4}$)+cos(2x-$\frac{3π}{4}$),x∈R.
(1)求f(x)的最小正周期和最大值;
(2)已知α,β∈(0,$\frac{π}{2}$),且f(α)=$\sqrt{2}$,cos(α+β)=$\frac{1}{3}$,求tanβ的值.

查看答案和解析>>

同步练习册答案