精英家教网 > 高中数学 > 题目详情

已知函数
(I)
(II)

(I)(II)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

若f(x)的定义域为[a,b],值域为[a,b](a<b),则称函数f(x)是[a,b]上的“四维光军”函数.
①设g(x)=x2-x+是[1,b]上的“四维光军”函数,求常数b的值;
②问是否存在常数a,b(a>-2),使函数h(x)=是区间[a,b]上的“四维光军”函数?若存在,求出a,b的值,否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中常数a > 0.
(1) 当a = 4时,证明函数f(x)在上是减函数;
(2) 求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在上的偶函数,且时,
(Ⅰ)求
(Ⅱ)求函数的表达式;
(Ⅲ)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)证明:当f(x1)=f(x2)(x1≠x2)时,x1+x2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求证:函数上的奇函数;
(2)若函数在区间上没有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求的范围;   (2)不等式对任意恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知某公司生产某品牌服装的年固定成本为10万元,每生产千件需另投入2.7万元,设该公司年内共生产该品牌服装千件并全部销售完,每千件的销售收入为万元,且
(1)写出年利润(万元)关于年产品(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?
(注:年利润=年销售收入-年总成本)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级籽棉2吨、二级籽棉1吨;生产乙种棉纱1吨需耗一级籽棉1吨,二级籽棉2吨.每1吨甲种棉纱的利润为900元,每1吨乙种棉纱的利润为600元.工厂在生产这两种棉纱的计划中,要求消耗一级籽棉不超过250吨,二级籽棉不超过300吨.问甲、乙两种棉纱应各生产多少吨,能使利润总额最大?并求出利润总额的最大值.

查看答案和解析>>

同步练习册答案