精英家教网 > 高中数学 > 题目详情

若f(x)的定义域为[a,b],值域为[a,b](a<b),则称函数f(x)是[a,b]上的“四维光军”函数.
①设g(x)=x2-x+是[1,b]上的“四维光军”函数,求常数b的值;
②问是否存在常数a,b(a>-2),使函数h(x)=是区间[a,b]上的“四维光军”函数?若存在,求出a,b的值,否则,请说明理由.

; ②不存在,详见解析

解析试题分析:①根据信息找到b所满足的等式即可求出b的值,一定要先判断函数在闭区间上的单调性;②先假设存在题目要求的常数,根据“四维光军”函数的特性去找到此常数能得到的结论,推出矛盾即可说明这样的常数是不存在的,这是一种逆向思维的题目,首先假设存在,由存在得出矛盾,则可知存在不成立.
试题解析:①由已知得,其对称轴为,区间在对称轴的右边,
所以函数在区间上是单调递增的,                          3分
由“四维光军”函数的定义可知,
,又因为,解得;            6分
②假如函数在区间上是“四维光军”函数,            7分
因为在区间是单调递减函数,则有,             10分
,解得,这与已知矛盾.                        12分
考点:函数单调性的应用,函数的图形和性质的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

.
(1)请写出的表达式(不需证明);
(2)求的极小值;
(3)设的最大值为的最小值为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为 
(1)求的值;
(2)若函数在区间上是单调递减函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的定义域 ;
(2)若函数的最小值为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某社区有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.
(1)设在甲家租一张球台开展活动小时的收费为,在乙家租一张球台开展活动小时的收费为.试求.
(2)问:小张选择哪家比较合算?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商场在店庆一周年开展“购物折上折活动”:商场内所有商品按标价的八折出售,折后价格每满500元再减100元.如某商品标价为1500元,则购买该商品的实际付款额为1500×0.8-200=1000(元).设购买某商品得到的实际折扣率.设某商品标价为元,购买该商品得到的实际折扣率为
(Ⅰ)写出当时,关于的函数解析式,并求出购买标价为1000元商品得到的实际折扣率;
(Ⅱ)对于标价在[2500,3500]的商品,顾客购买标价为多少元的商品,可得到的实际折扣率低于

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有两个投资项目,根据市场调查与预测,A项目的利润与投资成正比,其关系如图甲,B项目的利润与投资的算术平方根成正比,其关系如图乙.(注:利润与投资单位:万元)

(1)分别将A、B两个投资项目的利润表示为投资x(万元)的函数关系式;
(2)现将万元投资A项目, 10-x万元投资B项目.h(x)表示投资A项目所得利润与投资B项目所得利润之和.求h(x)的最大值,并指出x为何值时,h(x)取得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其图象为曲线,点为曲线上的动点,在点处作曲线的切线与曲线交于另一点,在点处作曲线的切线.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)当点时,的方程为,求实数的值;
(Ⅲ)设切线的斜率分别为,试问:是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)
(II)

查看答案和解析>>

同步练习册答案