精英家教网 > 高中数学 > 题目详情

有两个投资项目,根据市场调查与预测,A项目的利润与投资成正比,其关系如图甲,B项目的利润与投资的算术平方根成正比,其关系如图乙.(注:利润与投资单位:万元)

(1)分别将A、B两个投资项目的利润表示为投资x(万元)的函数关系式;
(2)现将万元投资A项目, 10-x万元投资B项目.h(x)表示投资A项目所得利润与投资B项目所得利润之和.求h(x)的最大值,并指出x为何值时,h(x)取得最大值.

(Ⅰ);(Ⅱ)当A项目投入3.75万元,B项目投入6.25万元时,最大利润为万元.

解析试题分析:(Ⅰ)此题为实际应用题,先根据题意分别写出函数关系式,再根据图求出函数解析式.实际题目一定要注意函数的定义域;(Ⅱ)根据(1)结合自变量的取值范围,求出最值.
试题解析:(1)投资为万元,A项目的利润为万元,B项目的利润为万元。
由题设,由图知        2分
所以          4分
从而      6分
(2)
,则        10分
时,此时        11分
答:当A项目投入3.75万元,B项目投入6.25万元时,最大利润为万元.  12分
考点:1.函数模型的应用;2.二次函数在定区间求最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若方程f(x)=0在[-1,1]上有实数根,求实数a的取值范围;
(Ⅱ)当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2)成立,求实数m的取值范围;
(Ⅲ)若函数y=f(x)(x∈[t,4])的值域为区间D,是否存在常数t,使区间D的长度为7-2t?若存在,求出t的值;若不存在,请说明理由(注:区间[p,q]的长度为q-p).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)如果对于任意的总成立,求实数的取值范围;
(Ⅲ)是否存在正实数,使得:当时,不等式恒成立?请给出结论并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若f(x)的定义域为[a,b],值域为[a,b](a<b),则称函数f(x)是[a,b]上的“四维光军”函数.
①设g(x)=x2-x+是[1,b]上的“四维光军”函数,求常数b的值;
②问是否存在常数a,b(a>-2),使函数h(x)=是区间[a,b]上的“四维光军”函数?若存在,求出a,b的值,否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数.
(Ⅰ)当时,求函数的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某企业有两个生产车间,分别位于边长是的等边三角形的顶点处(如图),现要在边上的点建一仓库,某工人每天用叉车将生产原料从仓库运往车间,同时将成品运回仓库.已知叉车每天要往返车间5次,往返车间20次,设叉车每天往返的总路程为.(注:往返一次即先从仓库到车间再由车间返回仓库)

(Ⅰ)按下列要求确定函数关系式:
①设长为,将表示成的函数关系式;
②设,将表示成的函数关系式.
(Ⅱ)请你选用(Ⅰ)中一个合适的函数关系式,求总路程 的最小值,并指出点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商场在店庆一周年开展“购物折上折活动”:商场内所有商品按标价的八折出售,折后价格每满500元再减100元.如某商品标价为1500元,则购买该商品的实际付款额为1500×0.8-200=1000(元).设购买某商品得到的实际折扣率.设某商品标价为元,购买该商品得到的实际折扣率为
(Ⅰ)写出当时,关于的函数解析式,并求出购买标价为1000元商品得到的实际折扣率;
(Ⅱ)对于标价在[2500,3500]的商品,顾客购买标价为多少元的商品,可得到的实际折扣率低于

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中常数a > 0.
(1) 当a = 4时,证明函数f(x)在上是减函数;
(2) 求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求的范围;   (2)不等式对任意恒成立,求实数的取值范围。

查看答案和解析>>

同步练习册答案