已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)如果对于任意的,总成立,求实数的取值范围;
(Ⅲ)是否存在正实数,使得:当时,不等式恒成立?请给出结论并说明理由.
(Ⅰ);(Ⅱ);(Ⅲ)存在,.
解析试题分析:(Ⅰ)先求,利用辅助角公式,函数的性质求得;(Ⅱ)构造新函数,用导数法求解,需要对进行分类讨论;(Ⅲ)探索性问题,构造新函数,用导数法解题.
试题解析:(Ⅰ)由于,
所以. (2分)
当,即时,;
当,即时,.
所以的单调递增区间为,
单调递减区间为. (4分)
(Ⅱ)令,要使总成立,只需时.
对求导得,
令,则,()
所以在上为增函数,所以. (6分)
对分类讨论:
① 当时,恒成立,所以在上为增函数,
所以,即恒成立;
② 当时,在上有实根,因为在上为增函数,
所以当时,,所以,不符合题意;
③ 当时,恒成立,所以在上为减函数,则,不符合题意.
综合①②③可得,所求的实数的取值范围是. (9分)
(Ⅲ)存在正实数使得当时,不等式恒成立.
理由如下:令,要使在上恒成立,只需. (10分)
因为,且,,
所以存在正实数,使得,
科目:高中数学 来源: 题型:解答题
某社区有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.
(1)设在甲家租一张球台开展活动小时的收费为元,在乙家租一张球台开展活动小时的收费为元.试求和.
(2)问:小张选择哪家比较合算?为什么?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
有两个投资项目、,根据市场调查与预测,A项目的利润与投资成正比,其关系如图甲,B项目的利润与投资的算术平方根成正比,其关系如图乙.(注:利润与投资单位:万元)
(1)分别将A、B两个投资项目的利润表示为投资x(万元)的函数关系式;
(2)现将万元投资A项目, 10-x万元投资B项目.h(x)表示投资A项目所得利润与投资B项目所得利润之和.求h(x)的最大值,并指出x为何值时,h(x)取得最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com