精英家教网 > 高中数学 > 题目详情

设函数是定义域为的奇函数.
(Ⅰ)求的值;
(Ⅱ)若,且上的最小值为,求的值.

(Ⅰ); (Ⅱ)的值是.

解析试题分析:(Ⅰ)根据奇函数定义,对任意;(Ⅱ)由(1)和条件,确定,然后令,将化为,,将问题转化为在定区间上求二次函数最值.利用上的最小值为确定.试题解析:(1)由题意,对任意,即
,因为为任意实数,
所以. 
(2)由(1),因为,所以,解得.     

,则,由,得
所以
时,上是增函数,则,解得(舍去).              
时,则,解得,或(舍去).
综上,的值是
考点:奇函数定义、指数函数、二次函数

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

为实数,记函数的最大值为.
(1)设,求的取值范围,并把表示为的函数
(2)求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

工厂生产某种产品,次品率与日产量(万件)间的关系为常数,且),已知每生产一件合格产品盈利元,每出现一件次品亏损元.
(1)将日盈利额(万元)表示为日产量(万件)的函数;
(2)为使日盈利额最大,日产量应为多少万件?(注:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

二次函数f(x)满足f (x+1)-f (x)=2x且f (0)=1.
⑴求f (x)的解析式;
⑵在区间[-1,1]上,y=f (x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若上为增函数,求实数的取值范围;
(Ⅱ)当时,方程有实根,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)如果对于任意的总成立,求实数的取值范围;
(Ⅲ)是否存在正实数,使得:当时,不等式恒成立?请给出结论并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一家公司生产某种产品的年固定成本为10万元,每生产1千件该产品需另投入2.7万元,设该公司一年内生产该产品千件并全部销售完,每千件的销售收入为万元,且
(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;
(Ⅱ)年产量为多少千件时,该公司在这一产品的产销过程中所获利润最大

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数.
(Ⅰ)当时,求函数的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设命题:函数上为减函数, 命题的值域为,命题函数定义域为
(1)若命题为真命题,求的取值范围。
(2)若为真命题,为假命题,求的取值范围.

查看答案和解析>>

同步练习册答案