精英家教网 > 高中数学 > 题目详情

已知函数=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若方程f(x)=0在[-1,1]上有实数根,求实数a的取值范围;
(Ⅱ)当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2)成立,求实数m的取值范围;
(Ⅲ)若函数y=f(x)(x∈[t,4])的值域为区间D,是否存在常数t,使区间D的长度为7-2t?若存在,求出t的值;若不存在,请说明理由(注:区间[p,q]的长度为q-p).

(1)[-8,0] ;(2);(3)t=-1或

解析试题分析:(1)函数在区间[-1,1]上存在零点,则必有:;(2)确定值域关系即集合关系,若对任意的x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2)成立,只需函数y=f(x)的值域为函数y=g(x)的值域的子集.(3)分类讨论,确定二次函数的值域.
试题解析:(Ⅰ):因为函数=x2-4x+a+3的对称轴是x=2,
所以在区间[-1,1]上是减函数,      1分
因为函数在区间[-1,1]上存在零点,则必有:
,        4分
解得,故所求实数a的取值范围为[-8,0] .      5分
(Ⅱ)若对任意的x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2)成立,只需函数y=f(x)的值域为函数y=g(x)的值域的子集.
=x2-4x+3,x∈[1,4]的值域为[-1,3],      7分
下求g(x)=mx+5-2m的值域.
①当m=0时,g(x)=5-2m为常数,不符合题意舍去;
②当m>0时,g(x)的值域为[5-m,5+2m],要使[-1,3] [5-m,5+2m],
,解得m≥6;      9分
③当m<0时,g(x)的值域为[5+2m,5-m],要使[-1,3] [5+2m,5-m],
,解得m≤-3;
综上,m的取值范围为.      10分
(Ⅲ)由题意知,可得
①当t≤0时,在区间[t,4]上,f(t)最大,f(2)最小,
所以f(t)-f(2)=7-2t即t2-2t-3=0,解得t=-1或t=3(舍去);
②当0<t≤2时,在区间[t,4]上,f(4)最大,f(2)最小,
所以f(4)-f(2)=7-2 t即4=7-2t,解得t=;      12分
③当2<t<时,在区间[t,4]上,f(4)最大,f(t)最小,
所以f(4)-f(t)=7-2t即t2-6t+7=0,解得t=(舍去),
综上所述,存在常数t满足题意,t=-1或.          14分
考点:1、二次函数零点;2、分类讨论思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知二次函数集合
(1)若求函数的解析式;
(2)若,且在区间上的最大值、最小值分别为,记,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是关于的方程的两个根,且.
(1)求出之间满足的关系式;
(2)记,若存在,使不等式在其定义域范围内恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.
(1)请写出的表达式(不需证明);
(2)求的极小值;
(3)设的最大值为的最小值为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是偶函数.
(1)求k的值;
(2)若方程有解,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知幂函数为偶函数,且在区间上是单调增函数
(1)求函数的解析式;
(2)设函数,其中.若函数仅在处有极值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定议在上的单调函数满足,且对任意都有
(1)求证:为奇函数;
(2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为 
(1)求的值;
(2)若函数在区间上是单调递减函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有两个投资项目,根据市场调查与预测,A项目的利润与投资成正比,其关系如图甲,B项目的利润与投资的算术平方根成正比,其关系如图乙.(注:利润与投资单位:万元)

(1)分别将A、B两个投资项目的利润表示为投资x(万元)的函数关系式;
(2)现将万元投资A项目, 10-x万元投资B项目.h(x)表示投资A项目所得利润与投资B项目所得利润之和.求h(x)的最大值,并指出x为何值时,h(x)取得最大值.

查看答案和解析>>

同步练习册答案