精英家教网 > 高中数学 > 题目详情

已知幂函数为偶函数,且在区间上是单调增函数
(1)求函数的解析式;
(2)设函数,其中.若函数仅在处有极值,求的取值范围.

(1);(2).

解析试题分析:(1)根据函数的单调性分析出指数大于零,解不等式可得的取值范围,再利用,然后根据幂函数为偶函数可得;(2)根据导数求极值,为使方程只有一个根,则必须恒成立,于是根据判别式可求.
试题解析:(1)在区间上是单调增函数,
       4分
时,不是偶函数,时,是偶函数,
.                    6分
(2)显然不是方程的根.
为使仅在处有极值,必须恒成立,       8分
即有,解不等式,得.       11分
这时,是唯一极值. .         12分
考点:1.幂函数;2.函数的单调性;3.导数公式;4.函数的极值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的值域;
(2)若关于的方程有解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知(a是常数,a∈R)
(Ⅰ)当a=1时求不等式的解集;
(Ⅱ)如果函数恰有两个不同的零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一企业生产某产品的年固定成本为10万元,每生产千件需另投入2.7万元,设该企业年内共生产此种产品千件,并且全部销售完,每千件的销售收入为万元,且
(1)写出年利润(万元)关于年产品(千件)的函数解析式;
(2)年产量为多少千件时,该企业生产此产品所获年利润最大?
(注:年利润=年销售收入-年总成本)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若方程f(x)=0在[-1,1]上有实数根,求实数a的取值范围;
(Ⅱ)当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2)成立,求实数m的取值范围;
(Ⅲ)若函数y=f(x)(x∈[t,4])的值域为区间D,是否存在常数t,使区间D的长度为7-2t?若存在,求出t的值;若不存在,请说明理由(注:区间[p,q]的长度为q-p).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂有名工人,现接受了生产型高科技产品的总任务.已知每台型产品由型装置和型装置配套组成,每个工人每小时能加工型装置或型装置.现将工人分成两组同时开始加工,每组分别加工一种装置(完成自己的任务后不再支援另一组).设加工型装置的工人有人,他们加工完型装置所需时间为,其余工人加工完型装置所需时间为(单位:小时,可不为整数).
(1)写出的解析式;
(2)写出这名工人完成总任务的时间的解析式;
(3)应怎样分组,才能使完成总任务用的时间最少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中为常数,已知销售价格为4元/千克时,每日可销售出该商品5千克;销售价格为4.5元/千克时,每日可销售出该商品2.35千克.
(1)求的解析式;
(2)若该商品的成本为2元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数).
(Ⅰ)若的定义域和值域均是,求实数的值;
(Ⅱ)若在区间上是减函数,且对任意的,总有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某企业有两个生产车间,分别位于边长是的等边三角形的顶点处(如图),现要在边上的点建一仓库,某工人每天用叉车将生产原料从仓库运往车间,同时将成品运回仓库.已知叉车每天要往返车间5次,往返车间20次,设叉车每天往返的总路程为.(注:往返一次即先从仓库到车间再由车间返回仓库)

(Ⅰ)按下列要求确定函数关系式:
①设长为,将表示成的函数关系式;
②设,将表示成的函数关系式.
(Ⅱ)请你选用(Ⅰ)中一个合适的函数关系式,求总路程 的最小值,并指出点的位置.

查看答案和解析>>

同步练习册答案