精英家教网 > 高中数学 > 题目详情

已知一企业生产某产品的年固定成本为10万元,每生产千件需另投入2.7万元,设该企业年内共生产此种产品千件,并且全部销售完,每千件的销售收入为万元,且
(1)写出年利润(万元)关于年产品(千件)的函数解析式;
(2)年产量为多少千件时,该企业生产此产品所获年利润最大?
(注:年利润=年销售收入-年总成本)

(1);(2) 时,取最大值.

解析试题分析:本题是实际应用题(1)利用年利润=年销售收入-年总成本及每千件的销售收入,分段来表示;(2)在每一段内利用导数判函数的单调性,求每一段内的最值,两段比较最大者为最大值.
试题解析:(1)当时,
时,
                       4分
(2)①当时,由,得且当时,;当时,
时,取最大值,且         8分
②当时,
当且仅当,即时,
综合①、②知时,取最大值.
所以当年产量为9千件时,该企业生产此产品获利最大.             12分
考点:1.分段函数的最值;2.函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

化简或求值:
(1);
(2)计算.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求证不论为何实数,总是增函数;
(2)确定的值,使为奇函数;
(3)当为奇函数时,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若函数上至少有一个零点,求的取值范围;
(Ⅱ)若函数上的最大值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.
(1)请写出的表达式(不需证明);
(2)求的极小值;
(3)设的最大值为的最小值为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

把长为10cm的细铁丝截成两段,各自围成一个正方形,求这两个正方形面积之和的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知幂函数为偶函数,且在区间上是单调增函数
(1)求函数的解析式;
(2)设函数,其中.若函数仅在处有极值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中是自然对数的底数,
(1)若,求曲线在点处的切线方程;
(2)若,求的单调区间;
(3)若,函数的图象与函数的图象有3个不同的交点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商场在店庆一周年开展“购物折上折活动”:商场内所有商品按标价的八折出售,折后价格每满500元再减100元.如某商品标价为1500元,则购买该商品的实际付款额为1500×0.8-200=1000(元).设购买某商品得到的实际折扣率.设某商品标价为元,购买该商品得到的实际折扣率为
(Ⅰ)写出当时,关于的函数解析式,并求出购买标价为1000元商品得到的实际折扣率;
(Ⅱ)对于标价在[2500,3500]的商品,顾客购买标价为多少元的商品,可得到的实际折扣率低于

查看答案和解析>>

同步练习册答案