精英家教网 > 高中数学 > 题目详情

已知函数
(1)当时,求函数的值域;
(2)若关于的方程有解,求的取值范围.

(1)值域为 ;(2)的取值范围为.

解析试题分析:(1)当时,是个指数形式的函数,求其值域为可以使用换元法求解,令,将转化为关于的二次函数形式,,根据二次函数在给定区间上求解即可.易错点:要注意定义域的变化,其中的取值范围为的值域.
(2)问有解,求得取值范围,可使用分离参数法,,保证函数和函数有交点即可,既是求函数的值域,求值域的方法是先换元后配方,但要注意定义域的变化,求出函数的值域为,即是内,则.
试题解析:
(1)当时,,令,则,因而,故值域为 .
(2)方法一:由;由题意可知有交点即可.
,得则得,所以的取值范围为.
方法二:方程有解,令,则原题意等价于有解,
,当时,得,不成立;当时,根据根的分布的.
方法三:方程有解,令,则原题意等价于有解,即:的值域就是的取值范围,所以.
考点:1.值域的求法;2.函数有解问题;3.根的分布.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知二次函数的图像顶点为,且图像在轴截得的线段长为6.
(Ⅰ)求
(Ⅱ)若在区间上单调,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)判断函数的奇偶性,并说明理由。
(2)若,求使成立的集合。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

化简或求值:
(1);
(2)计算.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数集合
(1)若求函数的解析式;
(2)若,且在区间上的最大值、最小值分别为,记,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

集合A是由适合以下性质的函数构成的:对于定义域内任意两个不相等的实数,都有.
(1)试判断=是否在集合A中,并说明理由;
(2)设ÎA且定义域为(0,+¥),值域为(0,1),,试写出一个满足以上条件的函数的解析式,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为其反函数.
(Ⅰ)说明函数图象的关系(只写出结论即可);
(Ⅱ)证明的图象恒在的图象的上方;
(Ⅲ)设直线均相切,切点分别为()、(),且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求证不论为何实数,总是增函数;
(2)确定的值,使为奇函数;
(3)当为奇函数时,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知幂函数为偶函数,且在区间上是单调增函数
(1)求函数的解析式;
(2)设函数,其中.若函数仅在处有极值,求的取值范围.

查看答案和解析>>

同步练习册答案