精英家教网 > 高中数学 > 题目详情

已知二次函数的图像顶点为,且图像在轴截得的线段长为6.
(Ⅰ)求
(Ⅱ)若在区间上单调,求的范围.

(Ⅰ);(Ⅱ)

解析试题分析:(Ⅰ)由题意可设函数的顶点式为,结合图像在轴截得的线段长为6可知,点即为函数图像与轴的交点,将点代入可求得的解析式;(Ⅱ)函数上单调,可能有递增和单调递减两种情况,若上单调增,则左端点;若上单调减,则右端点.
试题解析:(Ⅰ)由题意,点,
             5分
             7分
(Ⅱ)①在区间上单调增,则       10分
②在区间上单调减,则,即      13分
综上:时,在区间上是单调的.    14分
考点:二次函数的表达式,二次函数的图像及其单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

己知函数f(x)=ex,xR.
(1)若直线y=kx+1与f(x)的反函数图象相切,求实数k的值;
(2)设x﹥0,讨论曲线y=f(x)与曲线y=mx2(m﹥0)公共点的个数;
(3)设,比较的大小并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了在夏季降温和冬季供暖时减少能源消耗,房屋的屋顶和外墙需要建造隔热层,某栋建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:)满足关系:
若不建隔热层,每年能源消耗费用为8万元。设为隔热层建造费用与20年的能源消耗费用之和。
(Ⅰ)求的值及的表达式;
(Ⅱ)隔热层修建多厚时,总费用最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知(a是常数,a∈R)
(Ⅰ)当a=1时求不等式的解集;
(Ⅱ)如果函数恰有两个不同的零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品(百台),其总成本为(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本)。销售收入(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
分别写出和利润函数的解析式(利润=销售收入—总成本);
工厂生产多少台产品时,可使盈利最多?并求出此时每台产品的售价。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

 
(Ⅰ)当,解不等式
(Ⅱ)当时,若,使得不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)                  
(2)计算

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求函数的定义域;
(2)若关于的不等式的解集是,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的值域;
(2)若关于的方程有解,求的取值范围.

查看答案和解析>>

同步练习册答案