精英家教网 > 高中数学 > 题目详情

已知函数
(1)判断函数的奇偶性,并说明理由。
(2)若,求使成立的集合。

(1) 是奇函数;(2)

解析试题分析:(1)首先求出的定义域关于原点对称,然后求关系,利用对数的运算法则将函数转化为,再由函数奇偶性的定义判断是奇函数;
(2)由求出,利用函数的定义域和单调性求出不等式的解集;易忘记定义域.
试题解析:
(1)由的定义域为

所以是奇函数
(2)


 

解得
所以使成立的集合.
考点:对数函数性质,复合函数奇偶性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

为了在夏季降温和冬季供暖时减少能源消耗,房屋的屋顶和外墙需要建造隔热层,某栋建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:)满足关系:
若不建隔热层,每年能源消耗费用为8万元。设为隔热层建造费用与20年的能源消耗费用之和。
(Ⅰ)求的值及的表达式;
(Ⅱ)隔热层修建多厚时,总费用最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)                  
(2)计算

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求函数的定义域;
(2)若关于的不等式的解集是,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且的解集为.
(Ⅰ)求的值;
(Ⅱ)若,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

岛A观察站发现在其东南方向有一艘可疑船只,正以每小时10海里的速度向东南方向航行,观察站即刻通知在岛A正南方向B处巡航的海监船前往检查.接到通知后,海监船测得可疑船只在其北偏东75°方向且相距10海里的C处,随即以每小时10 海里的速度前往拦截.
(I)问:海监船接到通知时,距离岛A多少海里?
(II)假设海监船在D处恰好追上可疑船只,求它的航行方向及其航行的时间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某医药研究所开发一种新药,据监测,如果成人按规定剂量服用该药,服药后每毫升血液中的含药量与服药后的时间之间近似满足如图所示的曲线.其中是线段,曲线段是函数是常数的图象.

(1)写出服药后每毫升血液中含药量关于时间的函数关系式;
(2)据测定:每毫升血液中含药量不少于时治疗有效,假若某病人第一次服药为早上,为保持疗效,第二次服药最迟是当天几点钟?
(3)若按(2)中的最迟时间服用第二次药,则第二次服药后再过,该病人每毫升血液中含药量为多少

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的值域;
(2)若关于的方程有解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知(a是常数,a∈R)
(Ⅰ)当a=1时求不等式的解集;
(Ⅱ)如果函数恰有两个不同的零点,求a的取值范围.

查看答案和解析>>

同步练习册答案