精英家教网 > 高中数学 > 题目详情

集合A是由适合以下性质的函数构成的:对于定义域内任意两个不相等的实数,都有.
(1)试判断=是否在集合A中,并说明理由;
(2)设ÎA且定义域为(0,+¥),值域为(0,1),,试写出一个满足以上条件的函数的解析式,并给予证明.

(1);(2)

解析试题分析:(1)根据题目给出的性质对函数进行判断即可;(2)可以模仿(1)中的函数进行寻找,或者可以这么找,因为我们学了指数、对数、幂函数,而(1)中已经出现了对数函数与幂函数,所以是否可以考虑从指数函数中寻找.
试题解析:(1).                   2分
对于的证明. 任意

. ∴             4分
对于,举反例:当时,


不满足. ∴.            7分
⑵函数,当时,值域为.  9分
任取,则

. ∴.          14分
考点:1.函数性质;2.新定义型解答题;3.指数函数、对数函数、指数函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

 
(Ⅰ)当,解不等式
(Ⅱ)当时,若,使得不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

岛A观察站发现在其东南方向有一艘可疑船只,正以每小时10海里的速度向东南方向航行,观察站即刻通知在岛A正南方向B处巡航的海监船前往检查.接到通知后,海监船测得可疑船只在其北偏东75°方向且相距10海里的C处,随即以每小时10 海里的速度前往拦截.
(I)问:海监船接到通知时,距离岛A多少海里?
(II)假设海监船在D处恰好追上可疑船只,求它的航行方向及其航行的时间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求值:
(1)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的值域;
(2)若关于的方程有解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,如果函数恰有两个不同的极值点,且.
(Ⅰ)证明:
(Ⅱ)求的最小值,并指出此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数若存在,使得成立,则称的不动点.
已知
(1)当时,求函数的不动点;
(2)若对任意实数,函数恒有两个相异的不动点,求的取值范围;
(3)在(2)的条件下,若图象上两点的横坐标是函数的不动点,且两点关于直线对称,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

“城中观海”是近年来国内很多大中型城市内涝所致的现象,究其原因,除天气因素、城市规划等原因外,城市垃圾杂物也是造成内涝的一个重要原因。暴雨会冲刷城市的垃圾杂物一起进入下水道,据统计,在不考虑其它因素的条件下,某段下水道的排水量V(单位:立方米/小时)是杂物垃圾密度x(单位:千克/立方米)的函数。当下水道的垃圾杂物密度达到2千克/立方米时,会造成堵塞,此时排水量为0;当垃圾杂物密度不超过0.2千克/立方米时,排水量是90立方米/小时;研究表明,时,排水量V是垃圾杂物密度x的一次函数。
(Ⅰ)当时,求函数V(x)的表达式;
(Ⅱ)当垃圾杂物密度x为多大时,垃圾杂物量(单位时间内通过某段下水道的垃圾杂物量,单位:千克/小时)可以达到最大,求出这个最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂有名工人,现接受了生产型高科技产品的总任务.已知每台型产品由型装置和型装置配套组成,每个工人每小时能加工型装置或型装置.现将工人分成两组同时开始加工,每组分别加工一种装置(完成自己的任务后不再支援另一组).设加工型装置的工人有人,他们加工完型装置所需时间为,其余工人加工完型装置所需时间为(单位:小时,可不为整数).
(1)写出的解析式;
(2)写出这名工人完成总任务的时间的解析式;
(3)应怎样分组,才能使完成总任务用的时间最少?

查看答案和解析>>

同步练习册答案