精英家教网 > 高中数学 > 题目详情

求值:
(1)
(2)

(1)-3;(2)1

解析试题分析:(1)主要熟练运用指数运算的三个公式,指数运算通常化假分数为底和分数指数; 特殊的自然对数要记住是以为底.(2)主要熟练运用对数运算的三个公式及换底公式,特殊的常用对数要记住是以为底.做(1)(2)这样的求题一般先化简,再求值,过程不易跳步,易运算错误
试题解析:
(1)

(2)

考点:指数、对数的运算性质

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某林场现有木材30000,如果每年平均增长5﹪,经过年,树林中有木材
(1)写出木材储量)与之间的函数关系式。
(2)经过多少年储量不少于60000?(结果保留一个有效数字)
(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上单调递减且满足.
(1)求的取值范围.
(2)设,求上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在区间[0,1]上有最小值-2,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

化简或求值:
(1);
(2)计算.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

用一块钢锭烧铸一个厚度均匀,且表面积为2m2的正四棱锥形有盖容器(如下图)。设容器高为m,盖子边长为m,

(1)求关于的解析式;
(2)设容器的容积为V m3,则当h为何值时,V最大? 并求出V的最大值(求解本题时,不计容器厚度).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

集合A是由适合以下性质的函数构成的:对于定义域内任意两个不相等的实数,都有.
(1)试判断=是否在集合A中,并说明理由;
(2)设ÎA且定义域为(0,+¥),值域为(0,1),,试写出一个满足以上条件的函数的解析式,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某分公司经销某种品牌产品,每件产品的成本为30元,并且每件产品须向总公司缴纳a元(a为常数,2≤a≤5)的管理费,根据多年的统计经验,预计当每件产品的售价为x元时,产品一年的销售量为(e为自然对数的底数)万件,已知每件产品的售价为40元时,该产品一年的销售量为500万件.经物价部门核定每件产品的售价x最低不低于35元,最高不超过41元.
(Ⅰ)求分公司经营该产品一年的利润L(x)万元与每件产品的售价x元的函数关系式;
(Ⅱ)当每件产品的售价为多少元时,该产品一年的利润L(x)最大,并求出L(x)的最大值.
参考公式:为常数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

把长为10cm的细铁丝截成两段,各自围成一个正方形,求这两个正方形面积之和的最小值。

查看答案和解析>>

同步练习册答案