精英家教网 > 高中数学 > 题目详情

用一块钢锭烧铸一个厚度均匀,且表面积为2m2的正四棱锥形有盖容器(如下图)。设容器高为m,盖子边长为m,

(1)求关于的解析式;
(2)设容器的容积为V m3,则当h为何值时,V最大? 并求出V的最大值(求解本题时,不计容器厚度).

(1);(2).

解析试题分析:(1)先用正四棱锥的高和底面边长把正四棱锥的表面积表示出来,然后化简得结果;(2)由(1)结果列出体积关于的表达式,先利用重要不等式求的最小值,即可得得最大值.
试题解析:(1)由题意知侧面三角形的高为
.
(2)由(1)知,则,当且仅当有最小值,即.
考点:1、正四棱锥的表面积;2、正四棱锥的体积;3、重要不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,是一个矩形花坛,其中AB=4米,AD=3米.现将矩形花坛扩建成一个更大的矩形花园,要求:B在上,D在上,对角线过C点,且矩形的面积小于64平方米.

(Ⅰ)设长为米,矩形的面积为平方米,试用解析式将表示成的函数,并写出该函数的定义域;
(Ⅱ)当的长度是多少时,矩形的面积最小?并求最小面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求值:
(1)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当,且时,求证: 
(2)是否存在实数,使得函数的定义域、值域都是?若存在,则求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求值:
(1)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为,且同时满足以下三个条件:①;②对任意的,都有;③当时总有.
(1)试求的值;
(2)求的最大值;
(3)证明:当时,恒有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,如果函数恰有两个不同的极值点,且.
(Ⅰ)证明:
(Ⅱ)求的最小值,并指出此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若的值域;
(Ⅱ)若存在实数,当恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知幂函数为偶函数,且在区间上是单调增函数
(1)求函数的解析式;
(2)设函数,其中.若函数仅在处有极值,求的取值范围.

查看答案和解析>>

同步练习册答案