精英家教网 > 高中数学 > 题目详情

如图所示,是一个矩形花坛,其中AB=4米,AD=3米.现将矩形花坛扩建成一个更大的矩形花园,要求:B在上,D在上,对角线过C点,且矩形的面积小于64平方米.

(Ⅰ)设长为米,矩形的面积为平方米,试用解析式将表示成的函数,并写出该函数的定义域;
(Ⅱ)当的长度是多少时,矩形的面积最小?并求最小面积.

(1)88 (2)307050元

解析试题分析:(1)要想求出矩形的面积需要求出AM长,由△NDC∽△NAM可以求出AM的长(2)由第一问可以知道s关于x的函数,令就可以将s转化为基本不等式求解.
试题解析:(Ⅰ)由△NDC∽△NAM,可得
,即,故
,解得
故所求函数的解析式为,定义域为.        6分
(Ⅱ)令,则由,可得

当且仅当,即时,即当时,取最小值48.
故当的长为时,矩形的面积最小,最小面积为平方米.    12分
考点:基本不等式

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

上海某化学试剂厂以x千克/小时的速度生产某种产品(生产条件要求),为了保证产品的质量,需要一边生产一边运输,这样按照目前的市场价格,每小时可获得利润是元.
(1)要使生产运输该产品2小时获得的利润不低于3000元,求x的取值范围;
(2)要使生产运输900千克该产品获得的利润最大,问:该工厂应该选取何种生产速度?并求最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数).
(Ⅰ)求函数的定义域;
(Ⅱ)若,求函数的值域;
(Ⅲ)若函数的图像恒在直线的上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义,,.
(1)比较的大小;
(2)若,证明:
(3)设的图象为曲线,曲线处的切线斜率为,若,且存在实数,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某林场现有木材30000,如果每年平均增长5﹪,经过年,树林中有木材
(1)写出木材储量)与之间的函数关系式。
(2)经过多少年储量不少于60000?(结果保留一个有效数字)
(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元).当年产量不小于80千件时,(万元).每件商品售价为500元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

湖北省第十四届运动会纪念章委托某专营店销售,每枚进价5元,同时每销售一枚这种纪念章需向荆州筹委会交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为元,为整数.
(1)写出该专营店一年内销售这种纪念章所获利润(元)与每枚纪念章的销售价格(元)的函数关系式(并写出这个函数的定义域);
(2)当每枚纪念章销售价格为多少元时,该特许专营店一年内利润(元)最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若非零函数对任意实数均有,且当
(1)求证:
(2)求证:为R上的减函数;
(3)当时, 对时恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

用一块钢锭烧铸一个厚度均匀,且表面积为2m2的正四棱锥形有盖容器(如下图)。设容器高为m,盖子边长为m,

(1)求关于的解析式;
(2)设容器的容积为V m3,则当h为何值时,V最大? 并求出V的最大值(求解本题时,不计容器厚度).

查看答案和解析>>

同步练习册答案