若非零函数对任意实数均有,且当时
(1)求证:;
(2)求证:为R上的减函数;
(3)当时, 对时恒有,求实数的取值范围.
(1)证法一:即又
当时,
则
故对于恒有
证法二: 为非零函数
(2)证明:令且
有, 又 即
故 又
故为R上的减函数
(3)实数的取值范围为
解析试题分析:(1)由题意可取代入等式,得出关于的方程,因为为非零函数,故,再令代入等式,可证,从而证明当时,有;(2)着眼于减函数的定义,利用条件当时,有,根据等式,令,,可得,从而可证该函数为减函数.(3)根据,由条件可求得,将替换不等式中的,再根据函数的单调性可得,结合的范围,从而得解.
试题解析:(1)证法一:即又
当时,
则
故对于恒有 4分
证法二: 为非零函数
(2)令且
有, 又 即
故 又
故为R上的减函数 8分
(3)故, 10分
则原不等式可变形为
依题意有 对恒成立
或或
故实数的取值范围为 13分
考点:1.函数的概念;2.函数的单调性;3.二次函数.
科目:高中数学 来源: 题型:解答题
已知函数,h(x)=2alnx,.
(1)当a∈R时,讨论函数的单调性;
(2)是否存在实数a,对任意的,且,都有
恒成立,若存在,求出a的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,是一个矩形花坛,其中AB=4米,AD=3米.现将矩形花坛扩建成一个更大的矩形花园,要求:B在上,D在上,对角线过C点,且矩形的面积小于64平方米.
(Ⅰ)设长为米,矩形的面积为平方米,试用解析式将表示成的函数,并写出该函数的定义域;
(Ⅱ)当的长度是多少时,矩形的面积最小?并求最小面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com