精英家教网 > 高中数学 > 题目详情

若非零函数对任意实数均有,且当
(1)求证:
(2)求证:为R上的减函数;
(3)当时, 对时恒有,求实数的取值范围.

(1)证法一:

时, 
 则
故对于恒有                    
证法二: 为非零函数   
(2)证明:令
, 又 即
 又 
为R上的减函数
(3)实数的取值范围为

解析试题分析:(1)由题意可取代入等式,得出关于的方程,因为为非零函数,故,再令代入等式,可证,从而证明当时,有;(2)着眼于减函数的定义,利用条件当时,有,根据等式,令,可得,从而可证该函数为减函数.(3)根据,由条件可求得,将替换不等式中的,再根据函数的单调性可得,结合的范围,从而得解.
试题解析:(1)证法一:

时, 
 则
故对于恒有                             4分
证法二: 为非零函数   
(2)令
, 又 即
 又 
为R上的减函数                               8分
(3),        10分
则原不等式可变形为
依题意有 恒成立

故实数的取值范围为       13分
考点:1.函数的概念;2.函数的单调性;3.二次函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,h(x)=2alnx,.
(1)当a∈R时,讨论函数的单调性;
(2)是否存在实数a,对任意的,且,都有
恒成立,若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,是一个矩形花坛,其中AB=4米,AD=3米.现将矩形花坛扩建成一个更大的矩形花园,要求:B在上,D在上,对角线过C点,且矩形的面积小于64平方米.

(Ⅰ)设长为米,矩形的面积为平方米,试用解析式将表示成的函数,并写出该函数的定义域;
(Ⅱ)当的长度是多少时,矩形的面积最小?并求最小面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)令,求关于的函数关系式及的取值范围;
(Ⅱ)求函数的值域,并求函数取得最小值时的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为正实数且满足
(1)求的最大值为;(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时有最大值2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求值:
(1)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当,且时,求证: 
(2)是否存在实数,使得函数的定义域、值域都是?若存在,则求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若的值域;
(Ⅱ)若存在实数,当恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案