精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ)令,求关于的函数关系式及的取值范围;
(Ⅱ)求函数的值域,并求函数取得最小值时的的值.

(Ⅰ)函数关系式的取值范围 
(Ⅱ)函数的值域为.

解析试题分析:(Ⅰ)先利用对数的运算性质转化成关于的函数,然后利用换元法转化为,最后通过解不等式求出t的范围.
(Ⅱ)利用数形结合的方法观察出值域,同时指明函数取得最小值时的的值.本题最好的的方法就是数形结合,这样就比较直观的通过图像找出函数的最小值以及函数取得最小值时的的值.数形结合的方法是高考涉及到的重要的一种思想方法.
试题解析:(Ⅰ)
.............2分
,即       2分
,即 
(Ⅱ)由(Ⅰ),数形结合得
时,,当时,      2分
函数的值域为     2分
时,,即     2分
考点:1、对数的运算性质;2、数形结合的方法;3、二次函数求值域

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分13分) 已知函数
(1)当的极值点;
(2)当上的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义,,.
(1)比较的大小;
(2)若,证明:
(3)设的图象为曲线,曲线处的切线斜率为,若,且存在实数,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元).当年产量不小于80千件时,(万元).每件商品售价为500元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

湖北省第十四届运动会纪念章委托某专营店销售,每枚进价5元,同时每销售一枚这种纪念章需向荆州筹委会交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为元,为整数.
(1)写出该专营店一年内销售这种纪念章所获利润(元)与每枚纪念章的销售价格(元)的函数关系式(并写出这个函数的定义域);
(2)当每枚纪念章销售价格为多少元时,该特许专营店一年内利润(元)最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元).当年产量不小于80千件时,(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;
(Ⅱ)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若非零函数对任意实数均有,且当
(1)求证:
(2)求证:为R上的减函数;
(3)当时, 对时恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某厂生产某种产品的年固定成本为万元,每生产千件,需另投入成本为.当年产量不足千件时,(万元).当年产量不小于千件时,(万元).每件商品售价为万元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数若存在,使得成立,则称的不动点.
已知
(1)当时,求函数的不动点;
(2)若对任意实数,函数恒有两个相异的不动点,求的取值范围;
(3)在(2)的条件下,若图象上两点的横坐标是函数的不动点,且两点关于直线对称,求的最小值.

查看答案和解析>>

同步练习册答案