(本小题满分13分) 已知函数
(1)当的极值点;
(2)当上的根的个数.
(1)极大值点,极小值点;(2)1.
解析试题分析:(1)将=-3.代入求函数的导数,并令导函数为零,即可求得两个x的值.通过x所在的区域判断导函数的正负性,即可得函数在相应的范围的单调性.从而得出极大值点和极小值点.本小题的要关注对数函数的定义域.
(2)因为在上的根的个数等价于的根的个数.等价于函数与x轴的交点的个数.对函数求导根据函数的单调性即可求得交点的个数.即是所求的根的个数.
试题解析:(1) 1分
令则, 3分
在単增,在单减, 5分
的极大值点,极小值点 7分
(2)当a=-4时, 即
设,则 10分
则在单调递增,又
所以在有唯一实数根. 13分
考点:1.对数函数的定义域.2.导数求函数的最值.3.导数求函数的单调性.
科目:高中数学 来源: 题型:解答题
现有A,B两个投资项目,投资两项目所获得利润分别是和(万元),它们与投入资金(万元)的关系依次是:其中与平方根成正比,且当为4(万元)时为1(万元),又与成正比,当为4(万元)时也是1(万元);某人甲有3万元资金投资.
(1)分别求出,与的函数关系式;
(2)请帮甲设计一个合理的投资方案,使其获利最大,并求出最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某商场经营一批进价是30元/件的商品,在市场试销中发现,此商品销售价元与日销售量件之间有如下关系:
x | 45 | 50 |
y | 27 | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某种海洋生物身体的长度(单位:米)与生长年限t(单位:年)
满足如下的函数关系:.(设该生物出生时t=0)
(1)需经过多少时间,该生物的身长超过8米;
(2)该生物出生后第3年和第4年各长了多少米?并据此判断,这2年中哪一年长得更快.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数.
(1)若,当时,求的取值范围;
(2)若定义在上奇函数满足,且当时,,求在上的反函数;
(3)对于(2)中的,若关于的不等式在上恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,h(x)=2alnx,.
(1)当a∈R时,讨论函数的单调性;
(2)是否存在实数a,对任意的,且,都有
恒成立,若存在,求出a的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在一条笔直的工艺流水线上有个工作台,将工艺流水线用如图所示的数轴表示,各工作台的坐标分别为,,,,每个工作台上有若干名工人.现要在流水线上建一个零件供应站,使得各工作台上的所有工人到供应站的距离之和最短.
(Ⅰ)若,每个工作台上只有一名工人,试确定供应站的位置;
(Ⅱ)若,工作台从左到右的人数依次为,,,,,试确定供应站的位置,并求所有工人到供应站的距离之和的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com