已知函数是偶函数。
(1)求的值;
(2)设函数,其中实数。若函数与的图象有且只有一个交点,求实数的取值范围。
(1);(2)
解析试题分析:(1)根据偶函数定义可得到关于k的方程,根据对应系数相等可解出k的值。(2)由题意分析可知将函数与的图象有且只有一个交点的问题 为方程只有一个根的问题。将整理变形并结合换元法可转化为,在上只有一个解的问题。因为此二次函数对称轴是变量,属于动轴定区间问题。分情况讨论,详见解析。
试题解析:解:(1)∵ 由题有对恒成立 …2分
即恒成立,整理得,所以∴
(2)由函数的定义域得, 由于
所以 即定义域为
∵函数与的图象有且只有一个交点,即方程
在上只有一解。
即:方程在上只有一解
令,则,上式可变形为,在上只有一个解。
当时,舍。
当时,记,其图像的对称轴为,所以在上单调递减,而。所以方程在上无解。
当时,记,其图象的对称轴
所以只需,即,此恒成立
∴此时的范围为
综上所述,所求的取值范围为
考点:奇偶性,数形结合思想,二次函数的动轴定区间问题
科目:高中数学 来源: 题型:解答题
已知函数f(x)=,x∈[-1,1],函数g(x)=[f(x)]2-2af(x)+3的最小值为h(a).
(1)求h(a);
(2)是否存在实数m、n同时满足下列条件:
①m>n>3;
②当h(a)的定义域为[n,m]时,值域为[n2,m2]?若存在,求出m、n的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米,圆心角为(弧度).
(1)求关于的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
上海某化学试剂厂以x千克/小时的速度生产某种产品(生产条件要求),为了保证产品的质量,需要一边生产一边运输,这样按照目前的市场价格,每小时可获得利润是元.
(1)要使生产运输该产品2小时获得的利润不低于3000元,求x的取值范围;
(2)要使生产运输900千克该产品获得的利润最大,问:该工厂应该选取何种生产速度?并求最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数的自变量的取值区间为A,若其值域区间也为A,则称A为的保值区间.
(Ⅰ)求函数形如的保值区间;
(Ⅱ)函数是否存在形如的保值区间?若存在,求出实数的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
湖北省第十四届运动会纪念章委托某专营店销售,每枚进价5元,同时每销售一枚这种纪念章需向荆州筹委会交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为元,为整数.
(1)写出该专营店一年内销售这种纪念章所获利润(元)与每枚纪念章的销售价格(元)的函数关系式(并写出这个函数的定义域);
(2)当每枚纪念章销售价格为多少元时,该特许专营店一年内利润(元)最大,并求出最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com