现有A,B两个投资项目,投资两项目所获得利润分别是和(万元),它们与投入资金(万元)的关系依次是:其中与平方根成正比,且当为4(万元)时为1(万元),又与成正比,当为4(万元)时也是1(万元);某人甲有3万元资金投资.
(1)分别求出,与的函数关系式;
(2)请帮甲设计一个合理的投资方案,使其获利最大,并求出最大利润是多少?
(1), ; (2)详见解析.
解析试题分析:(1)设, ,然后根据时,都是1(万元)代入,得到是多少,实际问题,定义域;(2) 设甲投资到A,B两项目的资金分别为(万元),()(万元),获得利润为y万元,分别代入利润P,Q的函数解析式,再利用换元,得到函数,求函数最大值.同时求出的值.
试题解析:解:(1)设P,Q与x的的比例系数分别是
,且都过(4,1)
所以: 2分, 6分
(2)设甲投资到A,B两项目的资金分别为(万元),()(万元),获得利润为y万元
由题意知:
所以当=1,即=1时,
答:甲在A,B两项上分别投入为1万元和2万元,此时利润最大,最大利润为1万元 (7)
考点:函数的实际应用
科目:高中数学 来源: 题型:解答题
已知函数f(x)=1-2ax-a2x(a>1).
(1)求函数f(x)的值域;
(2)若x∈[-2,1]时,函数f(x)的最小值是-7,求a的值及函数f(x)的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如果对任意实数x,y,都有f(x+y)=f(x)·f(y),且f(1)=2,
(1)求f(2),f(3),f(4)的值.
(2)求+++…+++的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
经市场调查,某旅游城市在过去的一个月内(以30天计),旅游人数f(t)(万人)与时间t(天)的函数关系近似满足f(t)=4+,人均消费g(t)(元)与时间t(天)的函数关系近似满足g(t)=115-|t-15|.
(1)求该城市的旅游日收益w(t)(万元)与时间t(1≤t≤30,t∈N*)的函数关系式;
(2)求该城市旅游日收益的最小值(万元).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=,x∈[-1,1],函数g(x)=[f(x)]2-2af(x)+3的最小值为h(a).
(1)求h(a);
(2)是否存在实数m、n同时满足下列条件:
①m>n>3;
②当h(a)的定义域为[n,m]时,值域为[n2,m2]?若存在,求出m、n的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,
(1)若曲线与在公共点处有相同的切线,求实数、的值;
(2)当时,若曲线与在公共点处有相同的切线,求证:点唯一;
(3)若,,且曲线与总存在公切线,求正实数的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
若函数f(x)对任意的实数x1,x2∈D,均有|f(x2)-f(x1)|≤|x2-x1|,则称函数f(x)是区间D上的“平缓函数”.
(1)判断g(x)=sin x和h(x)=x2-x是不是实数集R上的“平缓函数”,并说明理由;
(2)若数列{xn}对所有的正整数n都有|xn+1-xn|≤,设yn=sin xn,求证:|yn+1-y1|<.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
心理学家通过研究学生的学习行为发现;学生的接受能力与老师引入概念和描述问题所用的时间相关,教学开始时,学生的兴趣激增,学生的兴趣保持一段较理想的状态,随后学生的注意力开始分散,分析结果和实验表明,用表示学生掌握和接受概念的能力, x表示讲授概念的时间(单位:min),可有以下的关系:
(1)开讲后第5min与开讲后第20min比较,学生的接受能力何时更强一些?
(2)开讲后多少min学生的接受能力最强?能维持多少时间?
(3)若一个新数学概念需要55以上(包括55)的接受能力以及13min时间,那么老师能否在学生一直达到所需接受能力的状态下讲授完这个概念?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com