精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合;
(2)在函数f(x)的图象上取定点A(x1,f(x1)),B(x2,f(x2))(x1<x2),记直线AB的斜率为K,证明:存在x0∈(x1,x2),使f′(x0)=K恒成立.
(1)f′(x)=ex-a,
令f′(x)=0,解可得x=lna;
当x<lna,f′(x)<0,f(x)单调递减,当x>lna,f′(x)>0,f(x)单调递增,
故当x=lna时,f(x)取最小值,f(lna)=a-alna,
对一切x∈R,f(x)≥1恒成立,当且仅当a-alna≥1,①
令g(t)=t-tlnt,则g′(t)=-lnt,
当0<t<1时,g′(t)>0,g(t)单调递增,当t>1时,g′(t)<0,g(t)单调递减,
故当t=1时,g(t)取得最大值,且g(1)=1,
因此当且仅当a=1时,①式成立,
综上所述,a的取值的集合为{1}.
(2)根据题意,k=
f(x2)-f(x1)
x2-x1
=
ex2-ex1
x2-x1
-a,
令φ(x)=f′(x)-k=ex-
ex2-ex1
x2-x1

则φ(x1)=-
ex1
x2-x1
[ex2-x1-(x2-x1)-1],
φ(x2)=
ex2
x2-x1
[ex1-x2-(x1-x2)-1],
令F(t)=et-t-1,则F′(t)=et-1,
当t<0时,F′(t)<0,F(t)单调递减;当t>0时,F′(t)>0,F(t)单调递增,
则F(t)的最小值为F(0)=0,
故当t≠0时,F(t)>F(0)=0,即et-t-1>0,
从而ex2-x1-(x2-x1)-1>0,且
ex1
x2-x1
>0,则φ(x1)<0,
ex1-x2-(x1-x2)-1>0,
ex2
x2-x1
>0,则φ(x2)>0,
因为函数y=φ(x)在区间[x1,x2]上的图象是连续不断的一条曲线,所以存在x0∈(x1,x2),使φ(x0)=0,
即f′(x0)=K成立.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2-2lnx+a(a为实常数).
(1)求f(x)的单调区间;
(2)求f(x)在区间[
1
2
,2]
上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=ax3+bx+c图象过点(0,-
1
3
)
,且在x=1处的切线方程是y=-3x-1.
(1)求y=f(x)的解析式;
(2)求y=f(x)在区间[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知x=1是函数f(x)=x3-ax(a为参数)的一个极值点.
(1)求a的值;
(2)求x∈[0,2]时,函数f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=
x2
2
-2ax+3lnx.(0<a<3)
(1)当a=2时,求函数f(x)=
x2
2
-2ax+3lnx的单调区间.
(2)当x∈[1,+∞)时,若f(x)≥-5xlnx+3lnx-
3
2
恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某化工企业生产某种产品,生产每件产品的成本为3元,根据市场调查,预计每件产品的出厂价为x元(7≤x≤10)时,一年的产量为(11-x)2万件;若该企业所生产的产品能全部销售,则称该企业正常生产;但为了保护环境,用于污染治理的费用与产量成正比,比例系数为常数a(1≤a≤3).
(Ⅰ)求该企业正常生产一年的利润L(x)与出厂价x的函数关系式;
(Ⅱ)当每件产品的出厂价定为多少元时,企业一年的利润最大,并求最大利润.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=alnx-(1+a)x+
1
2
x2,a∈R
(Ⅰ)当0<a<1时,求函数f(x)的单调区间和极值;
(Ⅱ)当x∈[
1
e
,+∞)时f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax2+ln(x+1).
(1)求函数g(x)=f(x)-ax2-x的单调区间及最大值;
(2)当x∈[0,+∞)时,不等式f(x)≤x恒成立,求实数a的取值范围.
(3)求证:(1+
1
22
)(1+
1
3^
)(1+
1
42
)(1+
1
52
)…(1+
1
n2
)<e

参考导数公式:(ln(x+1))=
1
x+1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若一组数据的中位数为,则直线与曲线围成图形的面积为     .

查看答案和解析>>

同步练习册答案