精英家教网 > 高中数学 > 题目详情

已知圆C的方程为,点A,直线
(1)求与圆C相切,且与直线垂直的直线方程;
(2)O为坐标原点,在直线OA上是否存在异于A点的B点,使得为常数,若存在,求出点B,不存在说明理由.

(1);(2)存在点B对于圆上任意一点P都有为常数

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
如图:是单位圆上的点,是圆与轴正半轴的交点,三角形为正三角形,       且AB∥轴.

(1)求的三个三角函数值;
(2)求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)已知线段的端点的坐标为,端点
:上运动。
(1)求线段的中点的轨迹方程;
(2)过点的直线与圆有两个交点,弦的长为,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设平面直角坐标系中,设二次函数的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.求:
(Ⅰ)求实数b 的取值范围;
(Ⅱ)求圆C 的方程;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)在直角坐标系中,以坐标原点为圆心的圆与直线:相切.
(1)求圆的方程;
(2)若圆上有两点关于直线对称,且,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设椭圆的左、右焦点分别为,上顶点为,过点垂直的直线交轴负半轴于点,且
(1)求椭圆的离心率;
(2)若过三点的圆恰好与直线相切,求椭圆
方程;
(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于
点,在轴上是否存在点使得以为邻边的平行四边形是菱形,
如果存在,求出的取值范围,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)如图所示,已知以点为圆心的圆与直线相切.过点的动直线与圆相交于两点,的中点,直线相交于点.

(1)求圆的方程;
(2)当时,求直线的方程.
(3)是否为定值?如果是,求出其定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
过点作圆C的切线,切点为D,且QD=4
(1)求的值
(2)设P是圆C上位于第一象限内的任意一点,过点P作圆C的切线l,且lx轴于点A,交轴于点B,设,求的最小值(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若经过两点A(, 0),B(0, 2)的直线与圆相切,求的值

查看答案和解析>>

同步练习册答案