精英家教网 > 高中数学 > 题目详情
已知直线和曲线C的极坐标方程分别为ρcos(θ-
π
4
)=3
2
和ρ=1,则曲线C上的任一点到直线的距离的最小值为
 
考点:简单曲线的极坐标方程
专题:坐标系和参数方程
分析:把极坐标方程化为直角坐标方程,求出圆心到直线的距离d,再把d减去半径,即为所求.
解答: 解:直线和曲线C的极坐标方程分别为ρcos(θ-
π
4
)=3
2
和ρ=1,
可得它们的直角坐标方程分别为l:x+y-6=0,C:x2+y2=1,
求得圆心到直线的距离d=
|0+0-6|
2
=3
2

可得曲线C上的任一点到直线的距离的最小值为3
2
-1,
故答案为:3
2
-1
点评:本题主要考查把极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,直线和圆的位置关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果椭圆的长轴长为12,短轴长为8,焦点在x轴上,则椭圆方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}满足关系a1=3,an+1=an+n,则该数列的通项公式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某圆锥曲线C的极坐标方程为ρ2=
12
1+2cos2θ
,则曲线C的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,an+1=
an
3an+1
,a1=1,则a2014=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知R上的连续函数g(x)满足:
①当x>0时,g′(x)>0恒成立(g′(x)为函数g(x)的导函数);
②对任意的x∈R都有g(x)=g(-x),又函数f(x)满足:对任意的x∈R,都有f(
3
+x)=f(x-
3
)
成立.当x∈[-
3
3
]
时,f(x)=x3-3x.若关于x的不等式g[f(x)]≤g(a2-a+2)对x∈[-
3
2
-2
3
3
2
+2
3
]
恒成立,则a的取值范围是(  )
A、a∈R
B、0≤a≤1
C、-
1
2
-
3
3
4
≤a≤-
1
2
+
3
3
4
D、a≤0或a≥1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知斜率为-
1
2
的直线l交椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)于A,B两点,若点P(2,1)是AB的中点,则C的离心率等于(  )
A、
1
2
B、
2
2
C、
3
4
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

定义
a1a2
a3a4
=a1a4-a2a3,若f(x)=
sin(π-x)
3
cos(π+x)1
,则f(x)的图象向右平移
π
3
个单位得到的函数解析式为(  )
A、y=2sin(x-
3
B、y=2sin(x+
π
3
C、y=2cosx
D、y=2sinx

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)在(0,+∞)上有意义,且单调递增,满足f(2)=1,f(xy)=f(x)+f(y)
(1)求f(1)的值;
(2)若f(x+3)≤2-f(x),求x的取值范围.

查看答案和解析>>

同步练习册答案