分析 (Ⅰ)利用椭圆的离心率为$\frac{{\sqrt{2}}}{2}$,焦距为2,求出几何量,即可求椭圆方程;
(Ⅱ)直线方程代入椭圆方程,利用韦达定理及向量知识,即可求得m的值.
解答 解:(Ⅰ)∵椭圆的离心率为$\frac{{\sqrt{2}}}{2}$,焦距为2,
∴$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,c=1,∴a=$\sqrt{2}$,
∴b=$\sqrt{{a}^{2}-{c}^{2}}$=1
∴椭圆方程为$\frac{{x}^{2}}{2}$+y2=1;
(Ⅱ)设A(x1,y1),B(x2,y2),则
将直线y=x+m,代入椭圆方程,整理可得3x2+4mx+2m2-2=0,
△=16m2-12(2m2-2)>0,解得-$\sqrt{3}<m<\sqrt{3}$
∴x1+x2=$-\frac{4m}{3}$,x1x2=$\frac{2{m}^{2}-2}{3}$
∴y1y2=(x1+m)(x2+m)$\frac{{m}^{2}-2}{3}$
∵若$\overrightarrow{OA}•\overrightarrow{OB}=-1$(其中0为坐标原点),
∴x1x2+y1y2=-1
∴$\frac{2{m}^{2}-2}{3}+\frac{{m}^{2}-2}{3}$=-1,
∴m=±$\frac{\sqrt{3}}{3}$.
点评 本题考查椭圆的坐标方程,考查直线与椭圆的位置关系,考查向量知识的运用,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2 | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 5 | C. | -5 | D. | ±5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0,1,2,3} | B. | {-1,0,1} | C. | {y|-1≤y≤1} | D. | {y|0≤y≤2} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com