14£®É輯ºÏMÊÇʵÊý¼¯RµÄÒ»¸ö×Ó¼¯£¬Èç¹ûµãx0¡ÊR£¬Âú×㣺¶ÔÈÎÒâ?£¾0£¬¶¼´æÔÚx¡ÊM£¬Ê¹µÃ0£¼|x-x0|£¼?£¬³Æx0Ϊ¼¯ºÏMµÄÒ»¸ö¡°¾Ûµã¡±£¬ÈôÓм¯ºÏ£º¢ÙÓÐÀíÊý£»¢Ú{cos$\frac{¦Ð}{n+1}$|n¡ÊN*}£»¢Û{sin$\frac{¦Ð}{n+1}$|n¡ÊN*}£»¢Ü{$\frac{n}{n+1}$|n¡ÊN*}£®
ÆäÖÐÒÔ0Ϊ¡°¾Ûµã¡±µÄ¼¯ºÏÊÇ¢Ù¢Û£®£¨Ð´³öËùÓзûºÏÌâÒâµÄ½áÂÛÐòºÅ£©

·ÖÎö ¢Ù¶¨Òå[x]Ϊ²»´óÓÚxµÄ×î´óÕûÊý£¬´Ó¶ø¿ÉµÃ0£¼|$\frac{1}{[\frac{1}{?}]+2}$-0|£¼?£¬´Ó¶øÈ·¶¨0ΪÓÐÀíÊý¼¯µÄ¡°¾Ûµã¡±£»
¢ÚÓÉcos$\frac{¦Ð}{2}$£¼cos$\frac{¦Ð}{3}$£¼cos$\frac{¦Ð}{4}$£¼cos$\frac{¦Ð}{5}$£¼¡­£¼cos$\frac{¦Ð}{n+1}$¿ÉµÃ0²»ÊǼ¯ºÏ{cos$\frac{¦Ð}{n+1}$|n¡ÊN*}µÄ¡°¾Ûµã¡±£¬
¢ÛÓÉsinx£¼x£¬x¡Ê£¨0£¬1£©Öª¶ÔÈÎÒâ?£¾0£¬0£¼|sin?|£¼?£¬´Ó¶øÈ·¶¨£»
¢ÜÓÉ$\frac{1}{2}$£¼$\frac{2}{3}$£¼$\frac{3}{4}$£¼¡­£¼$\frac{n}{n+1}$Öª0²»ÊǼ¯ºÏ{$\frac{n}{n+1}$|n¡ÊN*}µÄ¡°¾Ûµã¡±£®

½â´ð ½â£º¢Ù¶¨Òå[x]Ϊ²»´óÓÚxµÄ×î´óÕûÊý£¬
Ôò¶ÔÈÎÒâ?£¾0£¬$\frac{1}{?}$£¼$[\frac{1}{?}]$+2£¬
Ôò?£¾$\frac{1}{[\frac{1}{?}]+2}$£¬
È¡ÓÐÀíÊýx=$\frac{1}{[\frac{1}{?}]+2}$¼´¿ÉµÃ£¬
0£¼|$\frac{1}{[\frac{1}{?}]+2}$-0|£¼?£¬
¹Ê0ΪÓÐÀíÊý¼¯µÄ¡°¾Ûµã¡±£»
¢Ú{cos$\frac{¦Ð}{n+1}$|n¡ÊN*}ÖеÄÔªËØ£¬
cos$\frac{¦Ð}{2}$£¼cos$\frac{¦Ð}{3}$£¼cos$\frac{¦Ð}{4}$£¼cos$\frac{¦Ð}{5}$£¼¡­£¼cos$\frac{¦Ð}{n+1}$£¬
¼´0£¼$\frac{1}{2}$£¼$\frac{\sqrt{2}}{2}$£¼cos$\frac{¦Ð}{5}$£¼¡­£¼cos$\frac{¦Ð}{n+1}$£¬
¹Ê0²»ÊǼ¯ºÏ{cos$\frac{¦Ð}{n+1}$|n¡ÊN*}µÄ¡°¾Ûµã¡±£¬
¢Û¡ßsinx£¼x£¬x¡Ê£¨0£¬1£©£¬
¡à¶ÔÈÎÒâ?£¾0£¬0£¼|sin?|£¼?£¬
¡à0Ϊ¼¯ºÏ{sin$\frac{¦Ð}{n+1}$|n¡ÊN*}µÄ¡°¾Ûµã¡±£»
¢Ü¡ß$\frac{1}{2}$£¼$\frac{2}{3}$£¼$\frac{3}{4}$£¼¡­£¼$\frac{n}{n+1}$£¬
¡à0²»ÊǼ¯ºÏ{$\frac{n}{n+1}$|n¡ÊN*}µÄ¡°¾Ûµã¡±£¬
¹Ê´ð°¸Îª£º¢Ù¢Û£®

µãÆÀ ±¾Ì⿼²éÁËѧÉú¶Ôж¨ÒåµÄ½ÓÊÜÄÜÁ¦ÓëÓ¦ÓÃÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Éèz£¬¦ØÎª¸´Êý£¬iΪÐéÊýµ¥Î»£¬Èô£¨1+2i£©•zΪ´¿ÐéÊý£¬z=£¨1+2i£©•¦Ø£¬|¦Ø|=5£¬Çó¸´Êý¦Ø£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Ôڱ߳¤Îª2µÄÕý·½ÐÎABCDÖУ¬µãPÑØ±ßBC¡¢CD£¨º¬¶Ëµã£©ÄæÊ±ÕëÔ˶¯£¬Éè¡ÏBAP=x£¬APµÄ³¤Îªy£¬ÄÇôº¯Êýy=f£¨x£©µÄ´óÖÂͼÏóΪ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®¼ÆË㣺$\frac{lg3+\frac{2}{5}lg9+\frac{3}{5}lg\sqrt{27}-lg\sqrt{3}}{lg81-lg27}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªº¯Êýf£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßx=1¶Ô³Æ£¬µ±x=1ʱ£¬f£¨x£©=1£»µ±x£¾1ʱ£¬f£¨x£©=$\frac{1}{x-1}$£®Èô·½³Ìf2£¨x£©+bf£¨x£©+c=0Ç¡ÓÐ3¸ö²»Í¬µÄʵ¸ùx1£¬x2£¬x3£¬Ôòx1+x2+x3=3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®½ÚÈÕÆÚ¼ä£¬Ä³ÖÖÏÊ»¨½ø»õ¼ÛÊÇÃ¿Êø2.5Ôª£¬ÏúÊÛ¼ÛÃ¿Êø5Ôª£»½ÚÈÕÂô²»³öÈ¥µÄÏÊ»¨ÒÔÃ¿Êø1.6Ôª¼Û¸ñ´¦Àí£®¸ù¾ÝǰÎåÄêÏúÊÛÇé¿öÔ¤²â£¬½ÚÈÕÆÚ¼äÕâÖÖÏÊ»¨µÄÐèÇóÁ¿X·þ´ÓÈçϱíËùʾµÄ·Ö²¼£º
X200300400500
P0.200.350.300.15
Èô½øÕâÖÖÏÊ»¨500Êø£¬ÔòÀûÈóµÄ¾ùֵΪ£¨¡¡¡¡£©
A£®706ÔªB£®690ÔªC£®754ÔªD£®720Ôª

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªf£¨2£©=-$\frac{4}{3}$£¬f¡ä£¨2£©=-1£¬Ôò$\underset{lim}{x¡ú2}$$\frac{3f£¨x£©+2x}{x-2}$µÄÖµÊÇ£¨¡¡¡¡£©
A£®1B£®2C£®-1D£®-2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Ô²$¦Ñ=2sin£¨¦È+\frac{¦Ð}{4}£©$µÄÔ²ÐÄ×ø±êÊÇ£¨¡¡¡¡£©
A£®$£¨{1£¬\frac{¦Ð}{4}}£©$B£®$£¨{\frac{1}{2}£¬\frac{¦Ð}{4}}£©$C£®$£¨{\sqrt{2}£¬\frac{¦Ð}{4}}£©$D£®$£¨{2£¬\frac{¦Ð}{4}}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®6¼þ²úÆ·ÖÐÓÐ4¼þÕýÆ·£¬2¼þ´ÎÆ·£¬´ÓÖÐÈÎÈ¡3¼þ£¬ÔòÇ¡ºÃÓÐÒ»¼þ´ÎÆ·µÄ¸ÅÂÊΪ$\frac{3}{5}$£®£¨½á¹ûÓÃ×î¼ò·ÖÊý±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸