精英家教网 > 高中数学 > 题目详情
8.已知f(2)=-$\frac{4}{3}$,f′(2)=-1,则$\underset{lim}{x→2}$$\frac{3f(x)+2x}{x-2}$的值是(  )
A.1B.2C.-1D.-2

分析 根据洛必达法则求出极限值即可.

解答 解:x→2时:x-2→0,
3f(2)+2×2=0,
根据洛必达法则:
则$\underset{lim}{x→2}$$\frac{3f(x)+2x}{x-2}$=$\underset{lim}{x→2}$$\frac{3f′(x)+2}{1}$=-1,
故选:C.

点评 本题考查了导数的应用,考查洛必达法则,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.将所数y=logax的图象向左平移一个单位长度,再向上平移一个单位长度后所得图象过点(2,2),则a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\left\{\begin{array}{l}{(3-a)x-4a,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$是R上的增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设集合M是实数集R的一个子集,如果点x0∈R,满足:对任意?>0,都存在x∈M,使得0<|x-x0|<?,称x0为集合M的一个“聚点”,若有集合:①有理数;②{cos$\frac{π}{n+1}$|n∈N*};③{sin$\frac{π}{n+1}$|n∈N*};④{$\frac{n}{n+1}$|n∈N*}.
其中以0为“聚点”的集合是①③.(写出所有符合题意的结论序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求f(x)=x-2lnx-$\frac{a(2-a)}{x}$+a2-1的单增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知O是三角形ABC内部一点,满足$\overrightarrow{OA}$+2$\overrightarrow{OB}$=4$\overrightarrow{CO}$,则$\frac{{S}_{△AOB}}{{S}_{△AOC}}$=(  )
A.$\frac{3}{2}$B.5C.2D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是$\frac{1}{3}$.设X为这名学生在途中遇到红灯的次数,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某公司试销一种成本单价为50元/件的新产品,规定试销时销售单价不低于成本单价,又不高于80元/件.经试销调查,发现销售量y(件)与销售单价x(元/件)可近似看作一次函数y=kx+b的关系(如图所示).
(1)根据图象,求一次函数y=kx+b的解析式.
(2)设公司获得的利润为S元(利润=销售总价-成本总价;销售总价=销售单价×销售量,成本总价=成本单价×销售量).
①试用销售单价x表示利润S;
②试问销售单价定为多少时,该公司可获得最大利润?最大利润是多少?此时的销售量是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知命题p:方程(ax+2)(ax-1)=0在[-1,1]上有解; 命题q:x1,x2是方程x2-mx-2=0的两个实根,不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1,1]恒成立.若命题p是真命题,命题q为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案