精英家教网 > 高中数学 > 题目详情
设定义域为R的函数f(x)=
2-|x-1|+1,x≠1
a,x≠1
,若关于x的方程2f2(x)-(2a+3)f(x)+3a=0有五个不同的实数解,则a的取值范围是
 
考点:函数的零点与方程根的关系
专题:函数的性质及应用
分析:作出f(x)的图象,利用换元法结合一元二次函数的图象和性质即可.
解答: 解:作出f(x)的图象如图:设t=f(x),
则方程等价为2t2-(2a+3)t+3a=0,
由图象可知,
若关于x的方程2f2(x)-(2a+3)f(x)+3a=0有五个不同的实数解,
∴即要求对应于f(x)等于某个常数有3个不同实数解,
∴故先根据题意作出f(x)的简图:
由图可知,只有当f(x)=a时,它有三个根.
所以有:1<a<2 ①.
再根据2f2(x)-(2a+3)f(x)+3a=0有两个不等实根,
则判别式△=(2a+3)2-4×2×3a>0,
解得a≠
3
2

故1<a<
3
2
3
2
<x<2,
故答案为:1<a<
3
2
3
2
<x<2
点评:本题主要考查函数和方程的应用,利用换元法结合一元二次函数的图象和性质,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a(2x-1)+(2a2+1)ln(-x),a∈R
(1)讨论f(x)在其定义域上的单调性;
(2)当a≥0时,判断f(x)在[-1,
1
2
]上零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,点P在椭圆上,且PF1⊥PF2,|PF1|•|PF2|=2,当a=2b时,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列定积分:
(1)
1
-1
x
5-4x
dx  
(2)
1
0
ex
e2x+1
dx  
(3)
e
1
2+lnx
x
dx.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x2+4x+3|,关于x的实系数方程f2(x)+bf(x)+c=0恰好有七个实数根,则实数c的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

9865+828535-9865+828535+9865+….这样以此类推到加减100次的结果是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2,x∈(-∞,0)
2cosx,x∈(0,π)
,若f[f(x0)]=0,则x0=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(
3
,2cosx),
b
=(sin2x,cosx),f(x)=
a
b
,x∈[0,
π
2
].
(1)求f(x)的最小值;
(2)求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知3a=2,log25=b,求log445.

查看答案和解析>>

同步练习册答案