精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=2sin(2x+$\frac{π}{3}$)+1;
(1)求函数f(x)的对称中心;
(2)若存在区间[a,b](a,b∈R且a<b),使得y=f(x)在[a,b]上至少含有6个零点,在满足上述条件的[a,b]中,求b-a的最小值.

分析 (1)根据三角函数的对称性进行求解即可.
(2)根据函数零点的条件,求出相邻两个零点的间隔,进行求解即可.

解答 解:(1)由2x+$\frac{π}{3}$=kπ得x=-$\frac{π}{6}$+$\frac{kπ}{2}$,k∈Z.
对于函数f(x)=2sin(2x+$\frac{π}{3}$)+1,对称中心为(-$\frac{π}{6}$+$\frac{kπ}{2}$,1),k∈Z.
(2)令f(x)=0,求出 sin(2x+$\frac{π}{3}$)=-$\frac{1}{2}$,
∴x=kπ-$\frac{π}{4}$,或x=kπ-$\frac{7π}{12}$,
故相邻的零点之间的间隔依次为$\frac{π}{3}$,$\frac{2π}{3}$.
y=f(x)在[a,b]上至少含有6个零点,等价于b-a的最小值为 2×$\frac{2π}{3}$+3×$\frac{π}{3}$=$\frac{7π}{3}$.

点评 本题主要考查三角函数的图象和性质,利用三角函数的对称性和函数零点的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知命题p:对任意x>1,x+$\frac{1}{x-1}$≥a,若¬p是真命题,则实数a的取值范围是a>3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设f(x)是(-∞,+∞)上的奇函数,且f(x+2)=-f(x),当0≤x≤1时,f(x)=x.
(1)求f(π)的值;
(2)求-1≤x≤3时,f(x)的解析式;
(3)当-4≤x≤4时,求f(x)=m(m<0)的所有实根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.($\frac{16}{81}$)${\;}^{-\frac{3}{4}}$+log3$\frac{5}{4}$+log3$\frac{4}{5}$=$\frac{27}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在等比数列{an}中,an>0(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,又a3与a5的等比中项为2.
(1)求数列{an}的通项公式;
(2)设bn=log2an,数列{bn}的前n项和为Sn,求数列{Sn}的通项公式及使Sn取的最大值时的n值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆C:x2+y2+2x-4y+3=0.
(1)在x轴、y轴上截距相等的直线l不过原点且与圆C相切,求直线l的方程;
(2)从圆C外一点P向圆引一条切线,切点为M,O为坐标原点,且MP=OP,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax+logax(a>0且a≠1)的定义域为[1,2].
(Ⅰ)若f(1)=2,求实数a的值;
(Ⅱ)若f(x)的最小值为5,求实数a的值;
(Ⅲ)是否存在实数a,使得f(x)<a2恒成立?若存在求出a的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=\frac{1}{3}{x^3}-e{x^2}+mx+1$,$g(x)=\frac{lnx}{x}$.
(Ⅰ)函数f(x)在点(1,f(1))处的切线与直线(1-2e)x-y+4=0平行,求函数f(x)的单调区间;
(Ⅱ)设函数f(x)的导函数为f′(x),对任意的x1,x2∈(0,+∞),若g(x1)<f′(x2)恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.有下列4个命题:
①若函数f(x)定义域为R,则g(x)=f(x)-f(-x)是奇函数;
②若函数f(x)是定义在R上的奇函数,?x∈R,f(x)+f(2-x)=0,则f(x图象关于x=1对称;
③已知x1和x2是函数定义域内的两个值(x1<x2),若f(x1)>f(x2),则f(x)在定义域内单调递减;
④若f(x)是定义在R上的奇函数,f(x+2)也是奇函数,则f(x)是以4为周期的周期函数.
其中,正确命题是①④(把所有正确结论的序号都填上).

查看答案和解析>>

同步练习册答案