精英家教网 > 高中数学 > 题目详情
写出数列1,
2
3
3
5
4
7
,…的一个通项公式,并判断它的增减性.
考点:数列的函数特性
专题:等差数列与等比数列
分析:根据条件利用观察法得到数列的通项公式,即可得到结论.
解答: 解:∵数列的前几项为
1
1
2
3
3
5
4
7
,…
∴数列的通项公式可以是an=
n
2n-1

∵an=
n
2n-1
=
1
2
(2n-1)+
1
2
2n-1
=
1
2
+
1
2
2n-1
=
1
2
+
1
4
n-
1
2

∴当n≥1时,{an}是递减数列
点评:本题主要考查数列的通项公式的求解,利用分式函数的单调性是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

ABC-A1B1C1是各棱长均相等的正三棱柱,D是侧棱CC1的中点.求证:平面AB1D⊥平面ABB1A1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+y2=1(a>1)的上顶点为A,右焦点为F,直线AF与圆M:(X-3)2+(y-1)2=3相切.
(1)求椭圆C的方程;
(2)求圆M关于直线AF对称的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:
(Ⅰ)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少?
(Ⅱ)从2号箱取出红球的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一个小球从 M处投入,通过管道自上而下落A或B或C.已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,2,3等奖.
(Ⅰ)已知获得l,2,3等奖的折扣率分别为50%,70%,90%.记随变量ξ为获得k(k=1,2,3)等奖的折扣率,求随机变量ξ的分布列及期望Eξ
(Ⅱ)若有3人次(投入l球为l人次)参加促销活动,记随机变量η为获得1等奖或2等奖的人次,求P(η=2)和η的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(x,y)与两定点M1,M2距离的比是一个正数m,求点M的轨迹方程.并说明轨迹是什么图形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
p
x
(p>0),讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实轴长为2a,虚轴长为2b的双曲线S的焦点在x轴上,直线y=-
3
x,|
OA
|2+|
OB
|2=
4
3
|
OA
|2•|
OB
|2
是双曲线S的一条渐近线,而且原点O,点A(a,0)和点B(0,-b)使等式成立.
(Ⅰ)求双曲线S的方程;
(Ⅱ)若双曲线S上存在两个点关于直线l:y=kx+4对称,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{xn}满足x1=0,xn+1=-xn2+xn+c(n∈N*).求证:0<c<1是数列{xn}是单调递增数列的必要不充分条件.

查看答案和解析>>

同步练习册答案