精英家教网 > 高中数学 > 题目详情
1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:
(Ⅰ)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少?
(Ⅱ)从2号箱取出红球的概率是多少?
考点:相互独立事件的概率乘法公式,互斥事件的概率加法公式
专题:概率与统计
分析:(Ⅰ)记事件A:最后从2号箱中取出的是红球;事件B:从1号箱中取出的是红球.P(B)=
4
2+4
=
2
3
,由此能求出从1号箱中取出的是红球的条件下,从2号箱取出红球的概率.
(2)P(A|
.
B
)=
3
8+1
=
1
3
,P(A)=P(A∩B)+P(A∩
.
B
)=P(A|B)P(B)+P(A|
.
B
)P(
.
B
),由此能求出从2号箱取出红球的概率.
解答: 解:(Ⅰ)记事件A:最后从2号箱中取出的是红球;
事件B:从1号箱中取出的是红球.
P(B)=
4
2+4
=
2
3
,P(
.
B
)=1-P(B)=
1
3

P(A|B)=
3+1
8+1
=
4
9

(2)∵P(A|
.
B
)=
3
8+1
=
1
3

∴P(A)=P(A∩B)+P(A∩
.
B
)=P(A|B)P(B)+P(A|
.
B
)P(
.
B

=
4
9
×
2
3
+
1
3
×
1
3
=
11
27
点评:本题考查概率的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2+bx+c,在x=1与x=-2时,都取得极值.
(Ⅰ)求a,b的值;
(Ⅱ)若x∈[-3,2]都有f(x)>
4
c
-
1
2
,(c>0)恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=cos(x+
2
3
π)+2cos2
x
2

(1)求f(x)在x∈[0,π]上的值域;
(2)记△ABC的内角A,B,C的对边长分别为a,b,c,若f(B)=1,b=1,c=
3
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)的二次项系数为a,且不等式f(x)>-4x的解集为(1,3).
(1)若方程f(x)+6a=0有两个相等的实根,求f(x)的解析式;
(2)若f(x)的最大值为正数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若A={x|5x2-2x-3<0},B={x|2x2+3x-2≤0}.求A∩B,A∪B?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)过点P(1,
2
2
),离心率e=
2
2
.求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

写出数列1,
2
3
3
5
4
7
,…的一个通项公式,并判断它的增减性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosx,sinx),
b
=(6sinx,cosx),f(x)=
a
•(
b
-
a
).
(Ⅰ)若x∈[0,
π
2
],求函数f(x)单调递减区间和值域;
(Ⅱ)在△ABC中,
AB
=
a
AC
=
b
.若f(x)=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

一直函数f(x)=loga
1-x
1+x
(a>0,a≠1).
(1)学生甲求出f(x)的定义域为(-∞,-1)∪(1,+∞);学生乙求出f(x)的定义域为(-1,1);学生丙求出f(x)的定义域为(-∞,-1),(1,+∞).你认为谁正确?
(2)请判断函数f(x)的奇偶性;
(3)请判断函数f(x)的单调性.

查看答案和解析>>

同步练习册答案