精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)的二次项系数为a,且不等式f(x)>-4x的解集为(1,3).
(1)若方程f(x)+6a=0有两个相等的实根,求f(x)的解析式;
(2)若f(x)的最大值为正数,求a的取值范围.
考点:二次函数的性质
专题:函数的性质及应用
分析:(1)设f(x)=ax2+bx+c,(a<0),由题意得方程f(x)=-4x两个根是1,3,由韦达定理求得b=-4a-4,c=3a,可得f(x)=ax2-4(a+1)x+3a.再根据△=16(a+1)2-36a2=0,解得a的值,可得f(x)的解析式.
(2)由题意可得
12a2-16(a+1)2
4a
>0,再由a<0可得 a2+8a+4>0,由此求得a的范围.
解答: 解:(1)设f(x)=ax2+bx+c,(a<0),由题意得方程f(x)=-4x两个根是1,3,
即ax2+(b+4)x+c=0两个根是1,3,故由韦达定理可得-
b+4
a
=4,
c
a
=3,∴b=-4a-4,c=3a,f(x)=ax2-4(a+1)x+3a.
再根据方程f(x)+6a=0,即ax2-4(a+1)x+9a=0有两个相等的实根,∴△=16(a+1)2-36a2=0,解得a=-
2
5

∴f(x)=-
2
5
x2-
12
5
x-
6
5

(2)由于f(x)=ax2-4(a+1)x+3a 的最大值为正数,可得
12a2-16(a+1)2
4a
>0,即
a2+8a+4
a
<0,
再由a<0可得 a2+8a+4>0,求得 a<-4-2
3
,或-4+2
3
<a<0,
即a的范围是:{a|a<-4-2
3
,或-4+2
3
<a<0 }.
点评:本题主要考查二次函数的性质,用待定系数法求函数的解析式,分式不等式的解法,体现了转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,△ABC内接于直径为BC的圆O,过点A作圆O的切线交CB的延长线于点P,∠BAC的平分线分别交BC和圆O于点D、E,若PA=2PB=10.
(1)求证:AC=2AB;
(2)求AD•DE的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg
1+x
1+ax
(a≠1)是奇函数,
(1)求a的值;
(2)若g(x)=f(x)+
2
1+2x
,x∈(-1,1),求g(
1
2
)+g(-
1
2
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)从若干张扑克牌中随机抽取一张,如果取到红心(事件A)的概率是
1
4
,取到方片(事件B)的概率是
1
4
.求:取到红色牌(事件C)的概率,取到黑色牌(事件D)的概率;
(2)同时掷两个骰子,计算向上的点数之和是6的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+y2=1(a>1)的上顶点为A,右焦点为F,直线AF与圆M:(X-3)2+(y-1)2=3相切.
(1)求椭圆C的方程;
(2)求圆M关于直线AF对称的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x4-4x3-4x2-1.
(1)设g(x)=bx2-1,若方程f(x)=g(x)的解集恰好有3个元素,求b的取值范围;
(2)在(1)的条件下,是否存在实数对(m,n),使f(x-m)+g(x-n)为偶函数?如存在,求出m、n;如不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:
(Ⅰ)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少?
(Ⅱ)从2号箱取出红球的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(x,y)与两定点M1,M2距离的比是一个正数m,求点M的轨迹方程.并说明轨迹是什么图形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=loga
1+x
1-x
(a>0,a≠1).
(1)判断f(x)的奇偶性,并说明理由; 
(2)若0<a<1,求使f(x)>0的x的取值范围.

查看答案和解析>>

同步练习册答案