精英家教网 > 高中数学 > 题目详情
如图,△ABC内接于直径为BC的圆O,过点A作圆O的切线交CB的延长线于点P,∠BAC的平分线分别交BC和圆O于点D、E,若PA=2PB=10.
(1)求证:AC=2AB;
(2)求AD•DE的值.
考点:相似三角形的判定
专题:推理和证明
分析:(1)通过证明△ABP∽△CAP,然后证明AC=2AB;
(2)利用切割线定理以及相交弦定理直接求AD•DE的值.
解答: 解:(1)∵PA是圆O的切线∴∠PAB=∠ACB又∠P是公共角
∴△ABP∽△CAP…(2分)
AC
AB
=
AP
PB
=2
∴AC=2AB…(4分)
(2)由切割线定理得:PA2=PB•PC∴PC=20
又PB=5∴BC=15…(6分)
又∵AD是∠BAC的平分线∴
AC
AB
=
CD
DB
=2

∴CD=2DB∴CD=10,DB=5…(8分)
又由相交弦定理得:AD•DE=CD•DB=50…(10分)
点评:本题主要考查与圆有关的比例线段、相似三角形的判定及切线性质的应用.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

A、B是单位圆O上的点,点A是单位圆与x轴正半轴的交点,点B在第二象限.记∠AOB=θ且sinθ=
4
5

(1)求B点坐标;
(2)求
sin(π+θ)+2sin(
π
2
-θ)
2cos(π-θ)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

当0<x≤
1
2
时,4x<logax,则a的取值范围是(  )
A、(
2
,2)
B、(1,
2
C、(
2
2
,1)
D、(0,
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、三点确定一个平面
B、四边形一定是平面图形
C、梯形一定是平面图形
D、平面α和平面β有不同在一条直线上的三个公共点

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
3
=1
(a>0)的离心率为2,则实数a=(  )
A、2
B、
6
2
C、
5
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个推导过程:
①∵a,b∈R+,∴(
b
a
)+(
a
b
)≥2
lgxlgy
=2;
②∵x,y∈R+,∴lgx+lgy≥2
lgxlgy

③∵a∈R,a≠0,∴(
4
a
)+a≥2
4
a
•a
=4;
④∵x,y∈R,xy<0,∴(
x
y
)+(
y
x
)=-[(-(
x
y
))+(-(
y
x
))]≤-2
(-
x
y
)(-
y
x
)
=-2.
其中正确的是(  )
A、①②B、②③C、③④D、①④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2+bx+c,在x=1与x=-2时,都取得极值.
(Ⅰ)求a,b的值;
(Ⅱ)若x∈[-3,2]都有f(x)>
4
c
-
1
2
,(c>0)恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
的夹角为60°,|
a
|=10,|
b
|=8,求:
(1)|
a
+
b
|;
(2)
a
+
b
a
的夹角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)的二次项系数为a,且不等式f(x)>-4x的解集为(1,3).
(1)若方程f(x)+6a=0有两个相等的实根,求f(x)的解析式;
(2)若f(x)的最大值为正数,求a的取值范围.

查看答案和解析>>

同步练习册答案