精英家教网 > 高中数学 > 题目详情
A、B是单位圆O上的点,点A是单位圆与x轴正半轴的交点,点B在第二象限.记∠AOB=θ且sinθ=
4
5

(1)求B点坐标;
(2)求
sin(π+θ)+2sin(
π
2
-θ)
2cos(π-θ)
的值.
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:(1)根据角θ的终边与单位交点为(cosθ,sinθ),结合同角三角函数关系和sinθ=
4
5
,可得B点坐标;
(2)由(1)中结论,结合诱导公式化简
sin(π+θ)+2sin(
π
2
-θ)
2cos(π-θ)
,代入可得答案.
解答: 解:(1)∵点A是单位圆与x轴正半轴的交点,点B在第二象限.
设B点坐标为(x,y),
则y=sinθ=
4
5

x=-
1-sin2θ
=-
3
5

即B点坐标为:(-
3
5
4
5
)

(2)∵
sin(π+θ)+2sin(
π
2
-θ)
2cos(π-θ)
=
-sinθ+2cosθ
-2cosθ
=
-
4
5
-
6
5
6
5
=-
5
3
点评:本题考查的知识点是同角三角函数基本关系的运用,诱导公式,难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列不等式中,正确的是(  )
A、tan
4
>tan
5
B、sin
π
5
>cos(-
π
7
C、sin(π-1)<sin1°
D、cos
5
<cos(-
5

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:一个三角形中,至少有一个内角不小于60°,用反证法证明时的假设为“三角形的
 
”.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log4(4x+1)+kx(k∈R))是偶函数
(1)求k的值;
(2)设g(x)=log4(a•2x-
4
3
a),若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两条直线l1:3x+4y-2=0与l2:3x+4y-2=0的交点P,
(1)求过点P且平行于直线l3:x-2y-1=0的直线l4的方程;
(2)若直线l5:ax-2y+1=0与直线l2垂直,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论中,错误的是(  )
A、x,y均为正数,则
x
y
+
y
x
≥2
B、a为正数,则(1+a)(a+
1
a
)≥3
C、lgx+logx10≥2,其中x>1
D、
x2+2
x2+1
≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知q是等比数列{an}的公比,则“q<1”是“数列{an}是递减数列”的(  )条件.
A、充分不必要
B、必要不充分
C、充要
D、既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosx,-
1
2
),
b
=(
3
sinx,cos2x),x∈R,设函数f(x)=
a
b

(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)求f(x)在[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC内接于直径为BC的圆O,过点A作圆O的切线交CB的延长线于点P,∠BAC的平分线分别交BC和圆O于点D、E,若PA=2PB=10.
(1)求证:AC=2AB;
(2)求AD•DE的值.

查看答案和解析>>

同步练习册答案