精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
3
=1
(a>0)的离心率为2,则实数a=(  )
A、2
B、
6
2
C、
5
2
D、1
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:由双曲线方程找出a,b,c,代入离心率,从而求出a.
解答: 解:由题意,
e=
c
a
=
a2+3
a
=2,
解得,a=1.
故选D.
点评:本题考查了双曲线的定义,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两条直线l1:3x+4y-2=0与l2:3x+4y-2=0的交点P,
(1)求过点P且平行于直线l3:x-2y-1=0的直线l4的方程;
(2)若直线l5:ax-2y+1=0与直线l2垂直,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cosx=-1,x=
 
.(化成弧度制)

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的不等式(kx-k2-4)(x-4)>0的解集为A,若集合B同时满足:①A∩Z=B(其中Z为整数集)②B中的元素个数有限且为最少.则实数k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数y=lg|x-3|和y=sin
πx
2
(-4≤x≤10),下列说法正确的是
 

(1)函数y=lg|x-3|的图象关于直线x=-3对称;
(2)y=sin
πx
2
(-4≤x≤10)的图象关于直线x=3对称;
(3)两函数的图象一共有10个交点;
(4)两函数图象的所有交点的横坐标之和等于30;
(5)两函数图象的所有交点的横坐标之和等于24.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC内接于直径为BC的圆O,过点A作圆O的切线交CB的延长线于点P,∠BAC的平分线分别交BC和圆O于点D、E,若PA=2PB=10.
(1)求证:AC=2AB;
(2)求AD•DE的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x、y满足
1≤x+y≤4
-2≤x-y≤2
目标函数Z=ax+by(a>0,b>0).
(1)若a=2,b=1,求Z的最大值与最小值;
(2)若Z的最大值为6,求
6
a
+
2
b
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

ABC-A1B1C1是各棱长均相等的正三棱柱,D是侧棱CC1的中点.求证:平面AB1D⊥平面ABB1A1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+y2=1(a>1)的上顶点为A,右焦点为F,直线AF与圆M:(X-3)2+(y-1)2=3相切.
(1)求椭圆C的方程;
(2)求圆M关于直线AF对称的圆的方程.

查看答案和解析>>

同步练习册答案