精英家教网 > 高中数学 > 题目详情
函数y=f(x)是定义域为R的奇函数,且对任意的x∈R,都有f(x+4)=f(x)成立,当x∈(0,2]时,f(x)=-x2+1.
(Ⅰ)当x∈[4k-2,4k+2](k∈Z)时,求函数f(x)的解析式;
(Ⅱ)求不等式f(x)>-1的解集.
分析:(Ⅰ)由奇函数的性质可得f(0)=0,由x∈(0,2]时,f(x)=-x2+1可求当x∈[-2,0)时f(x)=-f(-x)=x2-1,然后再由由f(x+4)=f(x),即y=f(x)是周期为4的函数,可求当x∈[4k-2,4k]时的函数f(x)=f(x-4k)及x∈(4k,4k+2]时f(x)=f(x-4k),从而 可求
(Ⅱ)当x∈(-2,2]时,由f(x)>-1,得
-2<x<0
x2-1>-1
,或
0<x≤2
-x2+1>-1
,或x=0可求x,然后由函数y=f(x)的周期为4,可得出f(x)>-1的解集
解答:解:(Ⅰ)当x=0时,∵f(0)=-f(0),∴f(0)=0.…(1分)
当x∈[-2,0)时,-x∈(0,2),f(x)=-f(-x)=x2-1                                 …(3分)
由f(x+4)=f(x),知y=f(x)又是周期为4的函数,所以当x∈[4k-2,4k]时,x-4k∈[-2,0)
∴f(x)=f(x-4k)=(x-4k)2-1,…(5分)
当x∈(4k,4k+2]时x-4k∈(0,2],∴f(x)=f(x-4k)=-(x-4k)2+1    …(7分)
故当x∈[4k-2,4k+2](k∈Z)时,函数f(x)的解析式为
(x-4k)2-1,x∈[4k-2,4k)
0          x=4k,(k∈Z)
-(x-4k)2+1,x∈(4k,4k+2]
      …(9分)
(Ⅱ)当x∈(-2,2]时,由f(x>-1),得
-2<x<0
x2-1>-1
,或
0<x≤2
-x2+1>-1
,或x=0.
解之,得-2<x<
2
,…(12分)
∵函数y=f(x)的周期为4,∴f(x)>-1的解集为{x|4k-2<x<4k+
2
}(k∈Z)…(14分)
点评:本题主要考查了由函数的奇函数的性质及函数的周期性求解函数的解析式,属于函数知识的综合应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)=ax+
1x+b
(a≠0)
的图象过点(0,-1)且与直线y=-1有且只有一个公共点;设点P(x0,y0)是函数y=f(x)图象上任意一点,过点P分别作直线y=x和直线x=1的垂线,垂足分别是M,N.
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心Q;
(3)证明:线段PM,PN长度的乘积PM•PN为定值;并用点P横坐标x0表示四边形QMPN的面积..

查看答案和解析>>

科目:高中数学 来源: 题型:

某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆.
规定:每辆自行车的日租金不超过20元,每辆自行车的日租金x元只取整数,并要求出租所有自行车一日的总收入必须超过一日的管理费用,用y表示出租所有自行车的日净收入(即一日中出租所有自行车的总收入减去管理费后的所得).
(1)求函数y=f(x)的解析式及定义域;
(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知:射线OA为y=kx(k>0,x>0),射线OB为y=-kx(x>0),动点P(x,y)在∠AOx的内部,PM⊥OA于M,PN⊥OB于N,四边形ONPM的面积恰为k.
(1)当k为定值时,动点P的纵坐标y是横坐标x的函数,求这个函数y=f(x)的解析式;
(2)根据k的取值范围,确定y=f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数y=f(x),有下列命题:
①若a∈[-2,2],则函数f(x)=
x2+ax+1
的定域为R;
②若f(x)=log
1
2
(x2-3x+2)
,则f(x)的单调增区间为(-∞,
3
2
)

③(理)若f(x)=
1
x2-x-2
,则
lim
x→2
[(x-2)f(x)]=0

(文)若f(x)=
1
x2-x-2
,则值域是(-∞,0)∪(0,+∞)
④定义在R的函数f(x),且对任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),则4是y=f(x)的一个周期.
其中真命题的编号是
 
.(文理相同)

查看答案和解析>>

科目:高中数学 来源: 题型:

某服装批发商场经营的某种服装,进货成本40元/件,对外批发价定为60元/件.该商场为了鼓励购买者大批量购买,推出优惠政策:一次购买不超过50件时,只享受批发价;一次购买超过50件时,每多购买1件,购买者所购买的所有服装可在享受批发价的基础上,再降低0.1元/件,但最低价不低于50元/件.
(Ⅰ)问一次购买150件时,每件商品售价是多少?
(Ⅱ)问一次购买200件时,每件商品售价是多少?
(Ⅲ)设购买者一次购买x件,商场的售价为y元,试写出函数y=f(x)的表达式.

查看答案和解析>>

同步练习册答案