精英家教网 > 高中数学 > 题目详情
9.在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似地服从正态分布N(70,100).已知成绩在90分以上的学生有12人.
(1)试问此次参赛学生的总数约为多少人?
(2)若成绩在80分以上(含80分)为优,试问此次竞赛成绩为优的学生约为多少人?

分析 (1)设出参赛人数的分数,根据分数符合正态分布,根据成绩在90分以上的学生有12人,求出大于90分的学生的概率,列出比例式,得到参赛的总人数.
(2)求出P(X≥80),再乘以参赛学生的总数,即可得出结论.

解答 解:(1)设参赛学生的成绩为X,因为X~N(70,100),所以μ=70,σ=10
则P(X≥90)=P(X≤50)=$\frac{1}{2}$[1-P(50<X<90)]
=$\frac{1}{2}$[1-P(μ-2σ<X<μ+2σ)]=$\frac{1}{2}$×(1-0.954 4)=0.022 8,
12÷0.022 8≈526(人).
因此,此次参赛学生的总数约为526人.
(2)由P(X≥80)=P(X≤60)=$\frac{1}{2}$[1-P(60<X<80)]
=$\frac{1}{2}$[1-P(μ-σ<X<μ+σ)]=$\frac{1}{2}$×(1-0.682 6)
=0.158 7,得526×0.158 7≈83.
因此,此次竞赛成绩为优的学生约为83人.

点评 本题考查正态分布曲线的特点及曲线所表示的意义,考查标准正态分布表的应用,考查学生的计算能力,是一个实际应用问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.arctan$\sqrt{3}$-arcsin(-$\frac{1}{2}$)+arccos0的值为(  )
A.$\frac{5π}{6}$B.πC.0D.-$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某工厂生产某种黑色水笔,每百支水笔的成本为30元,并且每百支水笔的加工费为m元(其中m为常数,且3≤m≤6).设该工厂黑色水笔的出厂价为x元/百支(35≤x≤40),根据市场调查,日销售量与ex成反比例,当每百支水笔的出厂价为40元时,日销售量为10万支.
(1)当每百支水笔的日售价为多少元时,该工厂的利润y最大,并求y的最大值.
(2)已知工厂日利润达到1000元才能保证工厂的盈利.若该工厂在出厂价规定的范围内,总能盈利,则每百支水笔的加工费m最多为多少元?(精确到0.1元)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.7个学生排成一排,在下列情况下,各有多少种不同排法?
(1)甲排头,
(2)甲不排头,也不排尾,
(3)甲、乙、丙三人必须在一起,
(4)甲、乙之间有且只有两人,
(5)甲、乙、丙三人两两不相邻.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=sin2ωx-$\sqrt{3}$cosωx•cos(ωx+$\frac{π}{2}$)-$\frac{1}{2}$(ω>0)的图象与x轴的交点中,相邻的两个交点之间的距离为$\frac{π}{2}$.
(1)求ω的值;
(2)求函数y=f(x)+f(x+$\frac{π}{4}$)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(普通班题)已知sinα=$\frac{3}{5}$,且$\frac{π}{2}$<α<π.
(1)求cos($\frac{π}{4}$-α)的值;
(2)求sin($\frac{2π}{3}$+2α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知x>y>0,则x+$\frac{1}{{({x-y})y}}$的最小值是(  )
A.2B.3C.4D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在区间(0,1)内随机选取一个数x,则3x-1<0的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知平面向量$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(1,1),$\overrightarrow{c}$=(-5,1),若($\overrightarrow{a}$+k$\overrightarrow{b}$)⊥$\overrightarrow{c}$,则实数k的值为-$\frac{11}{4}$.

查看答案和解析>>

同步练习册答案