精英家教网 > 高中数学 > 题目详情

如图,四棱锥P-ABCD的底面ABCD为菱形,∠ABC=60°,PA⊥底面ABCD,PA=AB=2,E为PA的中点.
(Ⅰ)求证:PC∥平面EBD;
(Ⅱ)求三棱锥C-PAD的体积VC-PAD
(Ⅲ)在侧棱PC上是否存在一点M,满足PC⊥平面MBD,若存在,求PM的长;若不存在,说明理由.

(Ⅰ)证明:设AC、BD相交于点F,连接EF,
∵ABCD底面ABCD为菱形,∴F为AC的中点,
又∵E为PA的中点,∴EF∥PC.
又∵EF?平面EBD,PC?平面EBD,
∴PC∥平面EBD.
(Ⅱ)解:∵底面ABCD为菱形,∠ABC=60°,
∴△ACD是边长为2正三角形,
又∵PA⊥底面ABCD,∴PA为三棱锥P-ACD的高,
∴VC-PAD=
(Ⅲ)解:在侧棱PC上存在一点M,满足PC⊥平面MBD,下面给出证明.
∵PA⊥底面ABCD,
又ABCD底面ABCD为菱形,∴AC⊥BD,
∵BD?平面ABCD,
∴BD⊥PC.
在△PBC内,可求,BC=2,
在平面PBC内,作BM⊥PC,垂足为M,
设PM=x,则有,解得
连接MD,∵PC⊥BD,BM⊥PC,BM∩BD=B,BM?平面BDM,BD?平面BDM,
∴PC⊥平面BDM.
所以满足条件的点M存在,此时PM的长为
分析:(I)利用菱形的性质可得F为AC的中点,再利用三角形的中位线定理可得EF∥PC,利用线面平行的判定定理即可得出;
(II)由已知PA⊥底面ABCD,可得PA为三棱锥P-ACD的高,利用VC-PAD=VP-ACD及三棱锥的体积计算公式即可得出;
(III)利用三垂线定理可得BD⊥PC,在平面PBC内,作BM⊥PC,垂足为M,求得PM的长即可知道点M是否在线段PC即可.
点评:熟练掌握菱形的性质、三角形的中位线定理、线面平行的判定定理、线面垂直的判定与性质定理、三棱锥的体积计算公式及“等体积变形、三垂线定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案