精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆的左顶点,且点在椭圆上, 分别是椭圆的左、右焦点。过点作斜率为的直线交椭圆于另一点,直线交椭圆于点.

1)求椭圆的标准方程;

2)若为等腰三角形,求点的坐标;

3)若,求的值.

【答案】123

【解析】试题分析:(1)依据题设条件建立方程组进行求解;(2)依据题设条件建立直线的方程,然后联立方程组求解;(3)先建立直线的方程,再与椭圆方程联立,求出点的坐标;然后建立的方程,与的方程联立,求出点的坐标,借助点在椭圆上建立方程进行求解

解:(1)由题意得 ,解得

椭圆的标准方程:

2 为等腰三角形,且 直线的方程,由

3)设直线的方程

不垂直;

直线的方程,直线的方程:

解得

又点在椭圆上得,即,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知A、B、C为△ABC的三个内角,且其对边分别为a、b、c,若cosBcosC﹣sinBsinC=
(1)求角A;
(2)若a=2 ,b+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知如图所示的程序框图

(1)当输入的x为2,﹣1时,分别计算输出的y值,并写出输出值y关于输入值x的函数关系式;
(2)当输出的结果为4时,求输入的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中,正确的有( ) ①两个变量间的相关系数r越小,说明两变量间的线性相关程度越低;
②命题“x∈R,使得x2+x+1<0”的否定是:“对x∈R,均有x2+x+1>0”;
③命题“p∧q为真”是命题“p∨q为真”的必要不充分条件;
④若函数f(x)=x3+3ax2+bx+a2在x=﹣1有极值0,则a=2,b=9或a=1,b=3.
A.0 个
B.1 个
C.2 个
D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为 ,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为 ,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击. (Ⅰ)求该射手恰好命中一次得的概率;
(Ⅱ)求该射手的总得分X的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象如图所示

(1)求函数f(x)的解析式;
(2)分析该函数是如何通过y=sinx变换得来的?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一组数据:1,1,4,5,5,5,则这组数据的众数和中位数分别是(
A.5和4
B.5和4.5
C.5和5
D.1和5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分) 某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过):

空气质量指数

空气质量等级

级优

级良

级轻度污染

级中度污染

级重度污染

级严重污染

该社团将该校区在天的空气质量指数监测数据作为样本,绘制的频率分布直方图如下图,把该直方图所得频率估计为概率

请估算年(以天计算)全年空气质量优良的天数(未满一天按一天计算)

)该校日将作为高考考场,若这两天中某天出现级重度污染,需要净化空气费用元,出现级严重污染,需要净化空气费用元,记这两天净化空气总费用为元,求的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图由图中数据可知身高在[120,130]内的学生人数为( )

A.20
B.25
C.30
D.35

查看答案和解析>>

同步练习册答案