精英家教网 > 高中数学 > 题目详情

【题目】已知如图所示的程序框图

(1)当输入的x为2,﹣1时,分别计算输出的y值,并写出输出值y关于输入值x的函数关系式;
(2)当输出的结果为4时,求输入的x的值.

【答案】
(1)解:当输入的x为2时,y=log22=1,

当输入的x为﹣1时,y=( 1=2.

输出值y关于输入值x的函数关系式为:y=


(2)解:当x>0时,y=log2x=4,解得:x=16;

当x≤0时,y=( x=4,解得:x=﹣2.

综上,当输出的结果为4时,求输入的x的值为16或﹣2


【解析】(1)分析程序中各变量、各语句的作用,再根据图示的顺序,可知:该程序的作用是计算分段函数y= 的函数值,代入即可求值得解.(2)分段讨论,利用函数解析式,分别求出相应的x的值即可得解.
【考点精析】解答此题的关键在于理解程序框图的相关知识,掌握程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的增函数,且对于任意的x都有f(﹣x)+f(x)=0恒成立,如果实数a,b满足不等式组 ,那么a2+b2的取值范围是(
A.[9,49]
B.(17,49]
C.[9,41]
D.(17,41]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:函数f(x)=lg(ax2﹣x+ a)的定义域为R;q:a≥1.如果命题“p∨q为真,p∧q为假”,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某早餐店每天制作甲、乙两种口味的糕点共n(nN*)份,每份糕点的成本1元,售价2元,如果当天卖不完,剩下的糕点作废品处理.该早餐店发现这两种糕点每天都有剩余,为此整理了过往100天这两种糕点的日销量(单位:份),得到如下的统计数据:

甲口味糕点日销量

48

49

50

51

天数

20

40

20

20

乙口味糕点日销量

48

49

50

51

天数

40

30

20

10

以这100天记录的各销量的频率作为各销量的概率,假设这两种糕点的日销量相互独立.

(1)记该店这两种糕点每日的总销量为X份,求X的分布列

(2)早餐店为了减少浪费,提升利润,决定调整每天制作糕点的份数

①若产生浪费的概率不超过0.6,求n的最大值;

②以销售这两种糕点的日总利润的期望值为决策依据,在每天所制糕点能全部卖完与n=98之中选其一,应选哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x-3)ex+ax,aR

(1)当a=1时,求曲线f(x)在点(2,f(2))处的切线方程;

(2)当a[0,e)时,设函数f(x)在(1,+)上的最小值为g(a),求函数g(a)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线 与椭圆有且只有一个公共点.

(Ⅰ)求椭圆的方程及点的坐标;

(Ⅱ)设是坐标原点,直线平行于,与椭圆交于不同的两点,且与直线交于点,证明:存在常数,使得,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量 =(sin x,cos x), =(sin x, sin x),x∈R,函数f(x)= ,求:
(1)f(x)的最小正周期;
(2)f(x)在区间[0,1]上的最大值和最小值,以及取得最大值和最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的左顶点,且点在椭圆上, 分别是椭圆的左、右焦点。过点作斜率为的直线交椭圆于另一点,直线交椭圆于点.

1)求椭圆的标准方程;

2)若为等腰三角形,求点的坐标;

3)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sinx﹣cosx+x+1,x∈[0,2π]
(1)求函数f(x)的单调递减区间;
(2)求函数f(x)的极小值和最大值,并写明取到极小值和最大值时分别对应x的值.

查看答案和解析>>

同步练习册答案