【题目】已知椭圆
:
的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线
:
与椭圆
有且只有一个公共点.
(Ⅰ)求椭圆
的方程及点
的坐标;
(Ⅱ)设
是坐标原点,直线
平行于
,与椭圆
交于不同的两点
、
,且与直线
交于点
,证明:存在常数
,使得
,并求
的值.
【答案】(Ⅰ)
,点T坐标为(2,1);(Ⅱ)
.
【解析】试题分析:本题考查椭圆的标准方程及其几何性质,考查学生的分析问题、解决问题的能力和数形结合的思想.第(Ⅰ)问,利用直线和椭圆只有一个公共点,联立方程,消去y得关于x的方程有两个相等的实数根,解出b的值,从而得到椭圆E的方程;第(Ⅱ)问,利用椭圆的几何性质,数形结合,根据根与系数的关系,进行求解.
试题解析:(Ⅰ)由已知,
,则椭圆E的方程为
.
由方程组
得
.①
方程①的判别式为
,由
,得
,
此时方程①的解为
,
所以椭圆E的方程为
.
点T坐标为(2,1).
(Ⅱ)由已知可设直线
的方程为
,
由方程组
可得![]()
所以P点坐标为(
),
.
设点A,B的坐标分别为
.
由方程组
可得
.②
方程②的判别式为
,由
,解得
.
由②得
.
所以
,
同理
,
所以![]()
![]()
![]()
.
故存在常数
,使得
.
科目:高中数学 来源: 题型:
【题目】已知正方形ABCD的顶点坐标分别为A(0,1),B(2,0),C(3,2).
(1)求CD边所在直线的方程;
(2)求以AC为直径的圆M的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数f(x)=Asin(ωx+φ)(x>0,A>0)的图象如图所示. ![]()
(1)求函数f(x)的解析式;
(2)写出函数f(x)的单调递增区间
(3)设不相等的实数,x1 , x2∈(0,π),且f(x1)=f(x2)=﹣2,求x1+x2的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知如图所示的程序框图 ![]()
(1)当输入的x为2,﹣1时,分别计算输出的y值,并写出输出值y关于输入值x的函数关系式;
(2)当输出的结果为4时,求输入的x的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的图象在点
处的切线方程为
.
(Ⅰ)求实数
、
的值;
(Ⅱ)求函数
在区间
上的最大值;
(Ⅲ)曲线
上存在两点
、
,使得
是以坐标原点
为直角顶点的直角三角形,且斜边
的中点在
轴上,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题中,正确的有( ) ①两个变量间的相关系数r越小,说明两变量间的线性相关程度越低;
②命题“x∈R,使得x2+x+1<0”的否定是:“对x∈R,均有x2+x+1>0”;
③命题“p∧q为真”是命题“p∨q为真”的必要不充分条件;
④若函数f(x)=x3+3ax2+bx+a2在x=﹣1有极值0,则a=2,b=9或a=1,b=3.
A.0 个
B.1 个
C.2 个
D.3个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
)的部分图象如图所示 ![]()
(1)求函数f(x)的解析式;
(2)分析该函数是如何通过y=sinx变换得来的?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|x2+ax﹣6a2≤0},B={x||x﹣2|<a},
(1)当a=1时,求A∩B和A∪B;
(2)当BA时,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com