精英家教网 > 高中数学 > 题目详情

【题目】已知定义在R上的函数f(x)=Asin(ωx+φ)(x>0,A>0)的图象如图所示.

(1)求函数f(x)的解析式;
(2)写出函数f(x)的单调递增区间
(3)设不相等的实数,x1 , x2∈(0,π),且f(x1)=f(x2)=﹣2,求x1+x2的值.

【答案】
(1)解:由函数f(x)的图象可得A=4,

又∵函数的周期T=2( )=π,

∴ω═ =2,

∵函数图象经过点P( ,4),即:4sin(2× +φ)=4,

∴利用五点作图法可得:2× +φ= ,求得:φ=

∴函数的表达式为:


(2)解:由2kπ﹣ ≤2x+ ≤2kπ+ ,k∈Z,可得:kπ﹣ ≤x≤kπ+ ,k∈Z,

可得函数f(x)的单调递增区间为:


(3)解:∵x∈(0,π),

∴2x+ ∈( ),

又∵f(x)=﹣2,可得:sin(2x+ )=﹣

∴2x+ = ,解得:x=

∴x1+x2=


【解析】(1)根据函数的最值得到A,再由函数的周期为2( )=π,结合周期公式得到ω的值,再根据函数的最大值对应的x值,代入并解之得φ,从而得到函数的表达式.(2)由2kπ﹣ ≤2x+ ≤2kπ+ ,k∈Z,可解得f(x)的单调递增区间.(3)由题意可得2x+ ∈( ),又f(x)=﹣2,可得:sin(2x+ )=﹣ ,进而解得符合条件的不相等的2个实数解,即可得解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.

(1)求到平面的距离

(2)在线段上是否存在一点,使?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若 ,求曲线 在点 处的切线方程;

(2)若 处取得极小值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD及其三视图如下图所示,E是侧棱PC上的动点.
(Ⅰ)求四棱锥P﹣ABCD的体积;
(Ⅱ)不论点E在何位置,是否都有BD⊥AE?试证明你的结论;
(Ⅲ)若点E为PC的中点,求二面角D﹣AE﹣B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某早餐店每天制作甲、乙两种口味的糕点共n(nN*)份,每份糕点的成本1元,售价2元,如果当天卖不完,剩下的糕点作废品处理.该早餐店发现这两种糕点每天都有剩余,为此整理了过往100天这两种糕点的日销量(单位:份),得到如下的统计数据:

甲口味糕点日销量

48

49

50

51

天数

20

40

20

20

乙口味糕点日销量

48

49

50

51

天数

40

30

20

10

以这100天记录的各销量的频率作为各销量的概率,假设这两种糕点的日销量相互独立.

(1)记该店这两种糕点每日的总销量为X份,求X的分布列

(2)早餐店为了减少浪费,提升利润,决定调整每天制作糕点的份数

①若产生浪费的概率不超过0.6,求n的最大值;

②以销售这两种糕点的日总利润的期望值为决策依据,在每天所制糕点能全部卖完与n=98之中选其一,应选哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆F1:(x+1)2+y2=16,定点F2(1,0),A是圆F1上的一动点,线段F2A的垂直平分线交半径F1AP点.

(1)求P点的轨迹C的方程;

(2)四边形EFGH的四个顶点都在曲线C上,且对角线EG,FH过原点O,

kEGkFH=-,求证:四边形EFGH的面积为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线 与椭圆有且只有一个公共点.

(Ⅰ)求椭圆的方程及点的坐标;

(Ⅱ)设是坐标原点,直线平行于,与椭圆交于不同的两点,且与直线交于点,证明:存在常数,使得,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家“十三五”计划,提出创新兴国,实现中国创新,某市教育局为了提高学生的创新能力,把行动落到实处,举办一次物理、化学综合创新技能大赛,某校对其甲、乙、丙、丁四位学生的物理成绩(x)和化学成绩(y)进行回归分析,求得回归直线方程为y=1.5x﹣35.由于某种原因,成绩表(如表所示)中缺失了乙的物理和化学成绩.

物理成绩(x)

75

m

80

85

化学成绩(y)

80

n

85

95

综合素质
(x+y)

155

160

165

180


(1)请设法还原乙的物理成绩m和化学成绩n;
(2)在全市物理化学科技创新比赛中,由甲、乙、丙、丁四位学生组成学校代表队参赛.共举行3场比赛,每场比赛均由赛事主办方从学校代表中随机抽两人参赛,每场比赛所抽的选手中,只要有一名选手的综合素质分高于160分,就能为所在学校赢得一枚荣誉奖章.若记比赛中赢得荣誉奖章的枚数为ξ,试根据上表所提供数据,预测该校所获奖章数ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cosxsin(x+ )﹣a,且x=﹣ 是方程f(x)=0的一个解.
(1)求实数a的值及函数f(x)的最小正周期;
(2)求函数f(x)的单调递减区间;
(3)若关于x的方程f(x)=b在区间(0, )上恰有三个不相等的实数根x1 , x2 , x3 , 直接写出实数b的取值范围及x1+x2+x3的取值范围(不需要给出解题过程)

查看答案和解析>>

同步练习册答案