已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+ln x,则f′(e)=( )
A.1 B.-1 C.-e-1 D.-e
科目:高中数学 来源: 题型:
如图1是某公共汽车线路收支差额y元与乘客量x的图象.
![]()
(1)试说明图1上点A、点B以及射线AB上的点的实际意义;
(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?
(3)此问题中直线斜率的实际意义是什么?
(4)图1、图2、图3中的票价分别是多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
已知二次函数f(x)=ax2+bx+c为偶函数,且f(-1)=-1.
(1)求函数f(x)的解析式;
(2)若函数g(x)=f(x)+(2-k)x在区间[-2,2]上单调递减,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是( )
A.(-1,2) B.(-∞,-3)∪(6,+∞)
C.(-3,6) D.(-∞,-1)∪(2,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
点P0(x0,y0)是曲线y=3ln x+x+k(k∈R)图象上一个定点,过点P0的切线方程为4x-y-1=0,则实数k的值为( )
A.2 B.-2 C.-1 D.-4
查看答案和解析>>
科目:高中数学 来源: 题型:
已知f(x)为二次函数,且f(-1)=2,f ′(0)=0,
f(x)dx=-2.
(1)求f(x)的解析式;
(2)求f(x)在[-1,1]上的最大值与最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com