精英家教网 > 高中数学 > 题目详情
9.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,1),则$\overrightarrow{a}$+2$\overrightarrow{b}$=(  )
A.(0,5)B.(5,-1)C.(-1,3)D.(-3,4)

分析 直接利用向量的坐标运算求解即可.

解答 解:向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,1),
则$\overrightarrow{a}$+2$\overrightarrow{b}$=(1,2)+2(-2,1)=(-3,4).
故选:D.

点评 本题考查向量的坐标运算,考查计算能力,会考常考题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.圆x2+y2=1在伸缩变换$\left\{\begin{array}{l}x'=2x\\ y'=3y\end{array}\right.$的作用下,所得方程是(  )
A.4x′2+9y′2=1B.$\frac{{{{x'}^2}}}{2}+\frac{{{{y'}^2}}}{3}=1$C.$\frac{{{{x'}^2}}}{9}+\frac{{{{y'}^2}}}{4}=1$D.$\frac{{{{x'}^2}}}{4}+\frac{{{{y'}^2}}}{9}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设x,y满足约束条件:$\left\{{\begin{array}{l}{x≥y}\\{y≥1}\\{x+y≤4}\end{array}}\right.$的可行域为M;
(1)在所给的坐标系中画出可行域M(用阴影表示,并注明边界的交点);
(2)求z=y-2x的最大值与最小值;
(3)设点P为圆x2+(y-3)2=1上的动点,Q为可行域M上的动点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{OA}$=(2,2),$\overrightarrow{OB}$=(4,1),在x轴上有一点P,使$\overrightarrow{AP}$•$\overrightarrow{BP}$有最小值,则P点坐标为(  )
A.(-3,0)B.(3,0)C.(2,0)D.(4,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.5个人排成一排,在下列情况下,各有多少种不同排法?
(1)甲不在排头,也不在排尾,
(2)甲、乙、丙三人必须在一起,
(3)甲、乙、丙三人两两不相邻,
(4)甲、乙、丙三人按从高到矮,自左向右的顺序.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,在多面体A1B1D1-ABCD,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F
(Ⅰ)证明:EF∥B1C;
(Ⅱ)求二面角E-A1D-B1的正切值;
(Ⅲ)求直线A1C与平面B1CD1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.tan75°=(  )
A.2+$\sqrt{3}$B.1+$\sqrt{3}$C.$\frac{3+\sqrt{3}}{3}$D.2-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设2a=3,2b=6,2c=12,则数列a,b,c是(  )
A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列
C.既是等差数列,又是等比数列D.非等差数列,又非等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.数列{an}满足:a1=3,a2=6,an+2=an+1-an,则a2011=3.

查看答案和解析>>

同步练习册答案