精英家教网 > 高中数学 > 题目详情
4.5个人排成一排,在下列情况下,各有多少种不同排法?
(1)甲不在排头,也不在排尾,
(2)甲、乙、丙三人必须在一起,
(3)甲、乙、丙三人两两不相邻,
(4)甲、乙、丙三人按从高到矮,自左向右的顺序.

分析 (1)甲不在排头,也不在排尾,先选2人排在排头和排尾,其他人任意排,问题得以解决;
(2)甲、乙、丙三人必须在一起,先把甲乙丙三人捆绑在一起,再和另外2人全排,问题得以解决;,
(3)甲、乙、丙三人两两不相邻,先排除甲乙丙之外的2人,形成了3个空,把甲乙丙插入,问题得以解决;,
(4)没有限制条件的排列为A55=120种,其中甲乙丙的顺序有A33=6种,问题得以解决;

解答 解:(1)甲不在排头,也不在排尾,先选2人排在排头和排尾,其他人任意排,故有A42A33=72种,
(2)甲、乙、丙三人必须在一起,先把甲乙丙三人捆绑在一起,再和另外2人全排,故有A33A33=36种,
(3)甲、乙、丙三人两两不相邻,先排除甲乙丙之外的2人,形成了3个空,把甲乙丙插入,故有A22A33=12种,
(4)没有限制条件的排列为A55=120种,其中甲乙丙的顺序有A33=6种,故甲、乙、丙三人按从高到矮,自左向右的顺序有$\frac{120}{6}$=20种.

点评 本题考查排列、组合的应用,注意特殊问题的处理方法,如相邻用捆绑法,不能相邻用插空法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在△ABC中,若$\overrightarrow{AB}$•$\overrightarrow{BC}$=$\overrightarrow{BC}$•$\overrightarrow{CA}$=$\overrightarrow{CA}$•$\overrightarrow{AB}$,则该三角形是(  )
A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设A是圆O外的一点,过A作直线与圆O交于B、C两点,若AB•AC=60,OA=8,则圆O的半径等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=4x-3•2x+3的值域为[1,7],则f(x)的定义域为(  )
A.(-1,1)∪[2,4]B.(0,1)∪[2,4]C.[2,4]D.(-∞,0]∪[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知二次函数f(x)图象过原点,且f(-1)∈[-1,2],f(1)∈[2,4],求f(-2)取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,1),则$\overrightarrow{a}$+2$\overrightarrow{b}$=(  )
A.(0,5)B.(5,-1)C.(-1,3)D.(-3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某款游戏共四关,玩家只有通过上一关才能继续进入下一关游戏,每通过一关可得10分,现在甲和乙来玩这款游戏,已知甲每关通过的概率是$\frac{1}{2}$,乙每关通过的概率是$\frac{2}{3}$.
(1)求甲、乙两人最后得分之和为20的概率;
(2)设甲的最后得分为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,如果lga-lgc=lgsinB=-lg$\sqrt{2}$,且B为锐角,则三角形的形状是等腰直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.两条平行直线3x-4y+12=0与3x-4y+2=0之间的距离d=2.

查看答案和解析>>

同步练习册答案