精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和Sn,且(3-m)Sn+2man=m+3(n∈N*),其中m为常数且m≠-3,m≠0.
(1)求证:{an}是等比数列;
(2)若数列{an}的公比满足q=f(m)且b1=a1,bn=
3
2
f(bn-1)(n∈N*,n≥2),求证{
1
bn
}
为等差数列,并求bn
分析:(1)利用式子(3-m)Sn+2man=m+3求出(3-m)Sn+1+2man+1=m+3,相减得到
an+1
an
=
2m
3+m
为常数,即可得证.
(2)先求出b1=1,再根据题意得到数列{bn}的表达式,构造新的数列,求出新数列的表达式,进而求出数列{bn}的表达式.
解答:(1)证明:∵(3-m)Sn+2man=m+3,∴(3-m)Sn+1+2man+1=m+3,
两式相减,得(3+m)an+1=2man(m≠3)
an+1
an
=
2m
3+m
为常数,
∴{an}是等比数列;
(2)解:由(3-m)a1+2ma1=m+3,得(m+3)a1=m+3,
∵m≠-3,∴a1=1,b1=1,
数列{an}的公比满足q=f(m)=
2m
3+m

∵bn=
3
2
f(bn-1),
∴bn=
3
2
2bn-1
3+bn-1

1
bn
-
1
bn-1
=
1
3

{
1
bn
}
为1为首项
1
3
为公差的等差数列,
1
bn
=
n+2
3

∴bn=
3
n+2
点评:本题考查等比数列的证明,考查数列的通项,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn,且Sn=3n+1.
(1)求数列{an}的通项公式;
(2)设bn=an(2n-1),求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
y≥0
nx+y≤4n
所表示的平面区域为Dn,若Dn内的整点(整点即横坐标和纵坐标均为整数的点)个数为an(n∈N*
(1)写出an+1与an的关系(只需给出结果,不需要过程),
(2)求数列{an}的通项公式;
(3)设数列an的前n项和为SnTn=
Sn
5•2n
,若对一切的正整数n,总有Tn≤m成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)设数列{an}的前n项和Sn=2n-1,则
S4
a3
的值为(  )

查看答案和解析>>

同步练习册答案